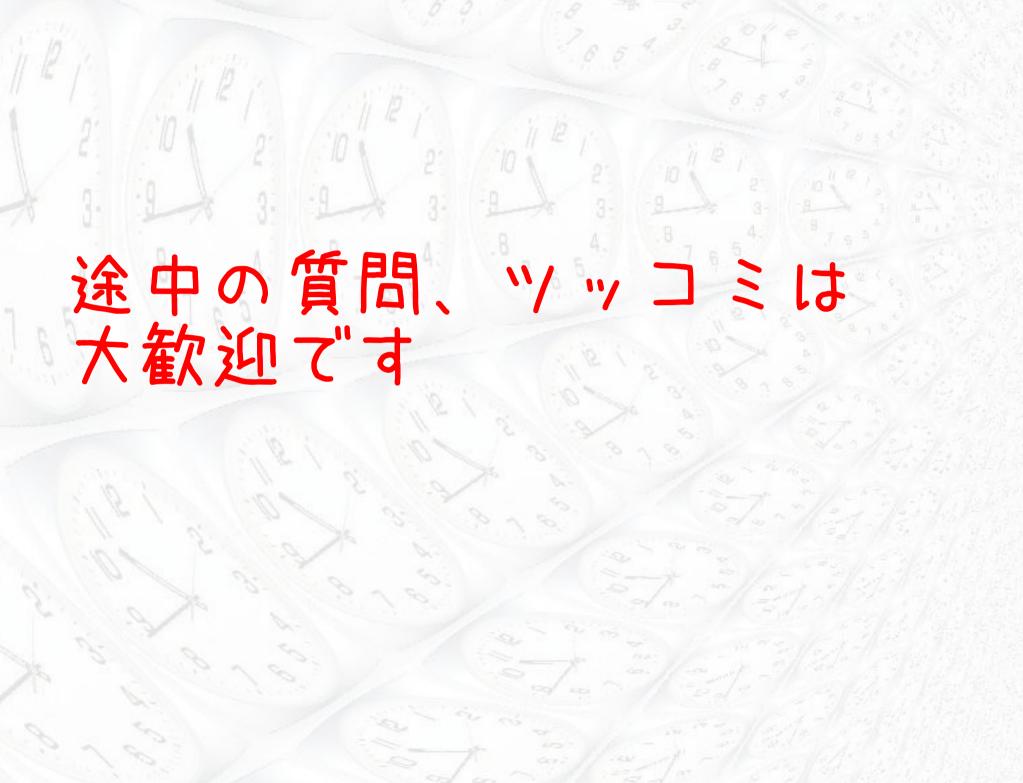

ブラックホールの風景 CGで見る相対性理論



ブラックホールで何が起こるか??

琉球大学理学部

物質地球科学科

物理系 前野昌弘

ブラックホールに関する様々な誤解

ブラックホールは重力が強い

ブラックホールは見えない

ブラックホールからは何も出てこない

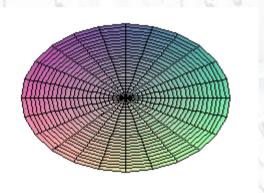
では、本当のブラックホールって どんなものなのか、 それをお話ししましょう

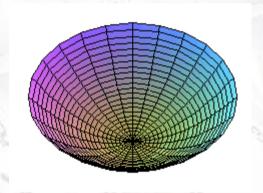
ブラックホールを生み出す方程式

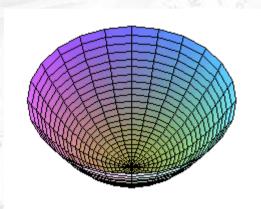
 $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G T_{\mu\nu}$

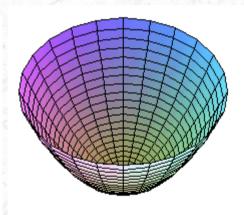
アインシュタインの 一般相対性理論 (1916)

「時空間の曲がり」を表す


「物質のエネルギー と運動量」 を表す


つまり、物質が時空間を曲げる!?

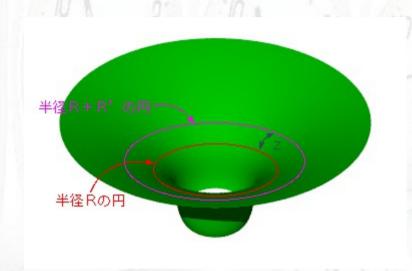

時空の曲がりの 究極の姿が ブラックホール なのです。


時空間が曲がるってど一ゆ一こと?

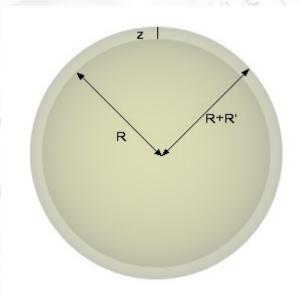
たとえば、、、、【空間が曲がる例】円周が2πrとは限らない!

【時間が曲がる例】 高さによって時間が違う

二階の時間は、 一階よりも速い!!


ここでクイズです。

ちなみに赤道の長さは40075キロメートルです。


何キロ長くなるかな??と悩む人が多いんだけど

答は2πメートル。 つまりたったの約6.28メートル 半径が1メートル 大きくなった だけだから。 しかし 「半径が1m伸びたら、 円周が2π伸びる」 というのは、空間が 曲がっていない時 だけなのです!

曲がった空間での円周率

←こんな漏斗状の面を考えると、中心からの距離 と円周は比例しない!

同様に我々の住んでいるこの空間で、円周=2πr、 または球の表面積=4πr²が成立しない事も有り得るのです!

高さによって時間が違う??

時間が速く経過

「そんなばかな!」

と言いたくなるけど、、、

この時間の遅れは、測定されている!!

時間が遅く経過

アインシュタインが一般相対論をとなえた頃は、 まだこの時間の違いを測定できるような精密な 時計はなかったが、今なら原子時計を使って比較 が可能!!

日常生活にも関係する「高さによる時間の進み方の違い」

アインシュタインが相対性理論を考えた 時代では、時間はそこまで精密には測られていなかったし、測る必要もありませ んでした。

でも、現代では・・・・・・

精密に測られている し、測らないと困るこ とがあるのです!!

なぜなら、時間が精密に測定できないと動かない機械が、日常生活で使われているからです。

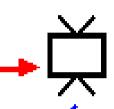
その機械とは???

第1ヒント:電波(光の一種)を利用する機械です。

第2ヒント:一部の携帯にもついてます。 PSPにも付けられます。

第3ヒント:自分の居場所を教えてくれる機械です。

答:GPS (カーナビ) です。


GPSの原理を アニメーションで解説

時間が精密に測れないと、カーナビは正しい位置を示さない!!

日常生活にも関係する!? 時空のゆがみ

高いところにある分、 20億分の1だけ時間が速い

運動している分、 100億分の1だけ、 時間が遅い

この差を打ち消す分だけ、人工衛星の時計はあらかじめ遅らせてある。

これで、カーナビと衛星の 時計が同期する

ちなみに、地球表面では宇宙の何もないところに比べて、時間の速度は0.999999995倍になっています。

20億分の1のずれとは1年でやっと0.016秒程度しかずれない。 時間のずれやゆがみは、普通に生活している人間にはわからない。 しかし、カーナビにとっては大事なのだ!!(光は1秒に30万キロも走る)

よく聞かれる質問

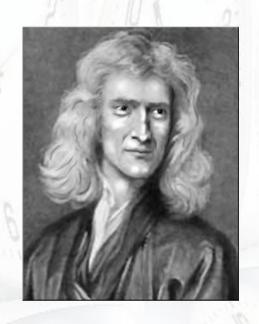
Q:なんで重力が あると空間が曲が るんですか? 答:逆です。 空間が曲がると重 力が生まれる。

時間的な曲がりの方で説明しましょう。高いところほど時間の経過が速いということは、高いところほど物体や波が速く進むということです。

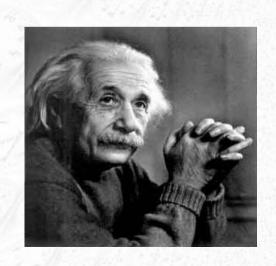
場所によって速さが変化すると、 その場所で曲がってしまう・・ ということは、 普通の物理でもありますね? (答を知りたければ私をクリック)

速い時間の中では、光も 速く進む!

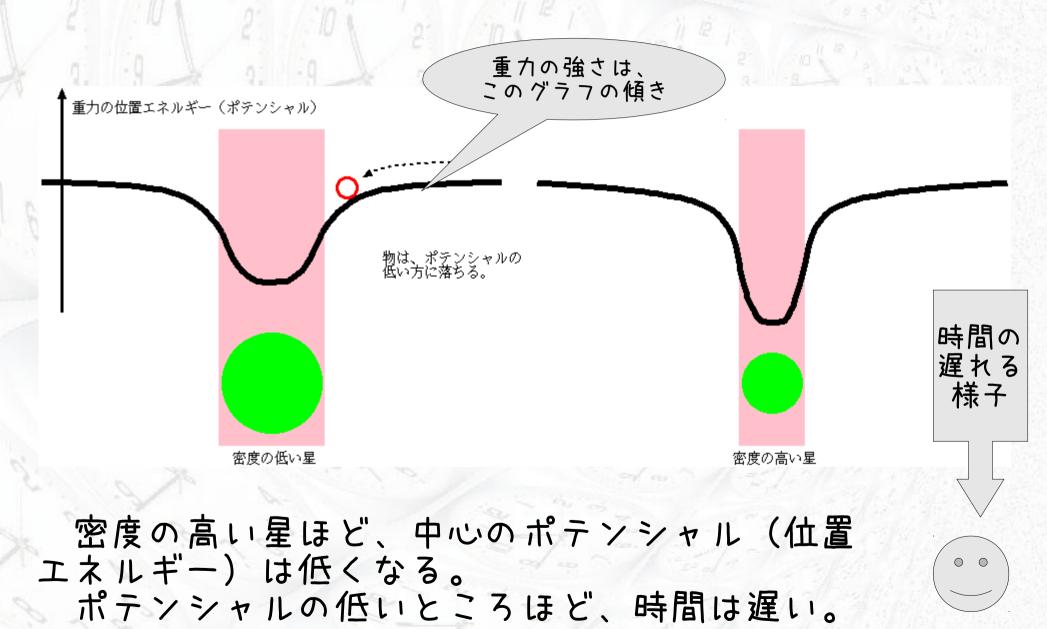
これは光(波)の例でしたが、 物質でも同様のことが起こることが わかってます。


もう一つの屈折の説明

重力の説明



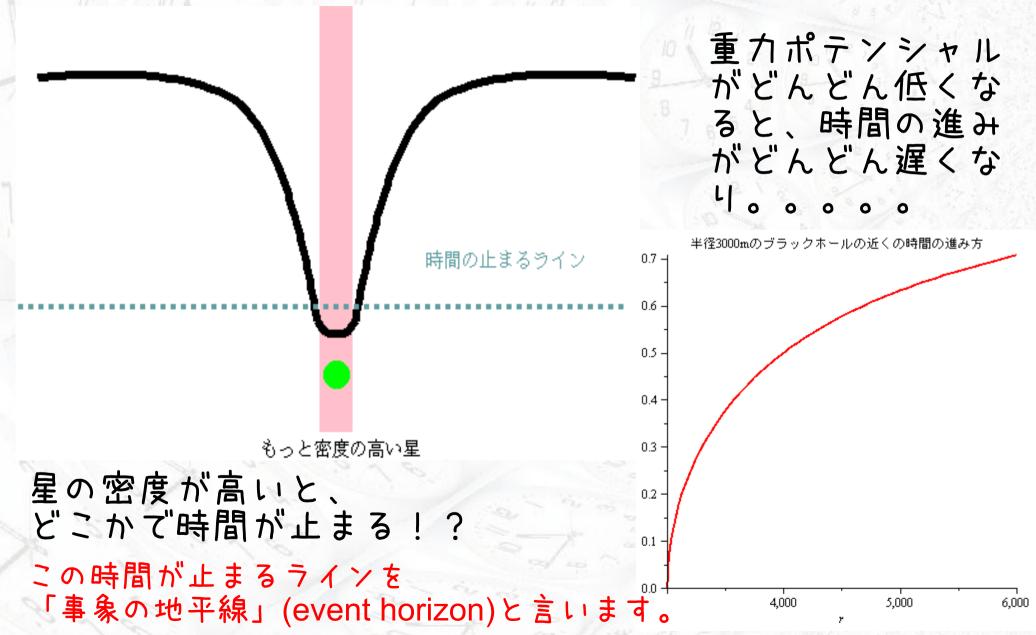
どうして物は"落ちる"のか?



地球と物体の間に、万有引力が働き、物体の進路が曲がる。

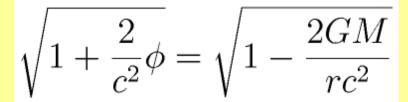
地球は時空間を曲げる。 曲がった時空の中では、 物体はまっすぐ進まない。

重力の位置エネルギーと時間


では、ブラックホールとは何か?

よく本に書いてある 「重力が強すぎて脱出できない」 は誤り!!

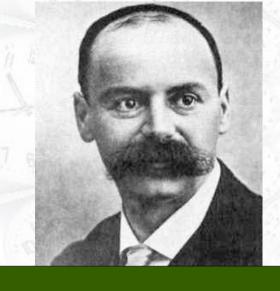
この考え方は古い(ニュートン的)重力の考え方。


一般相対論的に考えよう。 低いところほど時間が経つのが遅い、ということは?

ブラックホールを造るには

位置エネルギーと時間の関係

時間の進む速さは無限遠から見ると



倍になる (遅くなる)

G:万有引力定数 M:星の質量

c:光速度

φ: 重力ポテンシャル

シュワルツシュルト

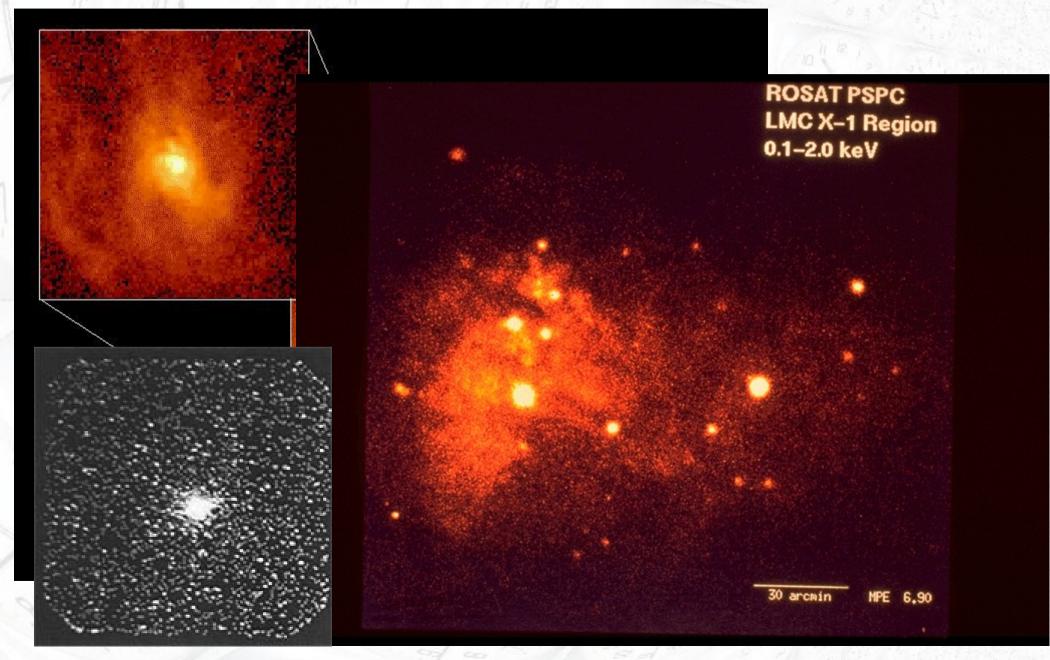
時間が止まるのは、

r= 2GM

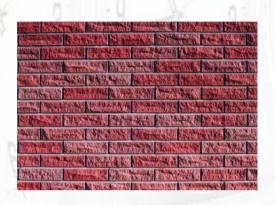
C² の所

↑シュワルツシュルト半径

重力ポテンシャルとは、質量をかけると位置 エネルギーになるもの。 $\phi = -\frac{GM}{2}$ (つまり、mghのghのこと) $\phi = -\frac{GM}{2}$


星をブラックホールにするなら?

シュワルツシュルト半径は、 地球なら、約9ミリ 太陽なら、3キロ


不可能そう?

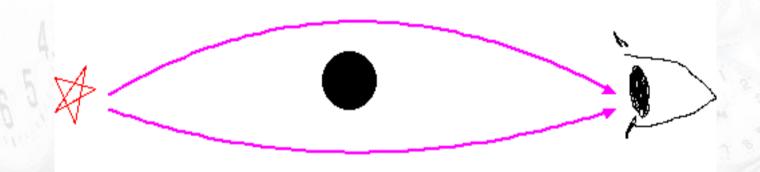
シュワルツシュルト半径は質量に比例し、 体積は半径の3乗に比例する。 つまり、大きいブラックホールは、 低い密度でも作ることができる。

ブラックホールの候補

CGで見るブラックホール

←ブラックホール

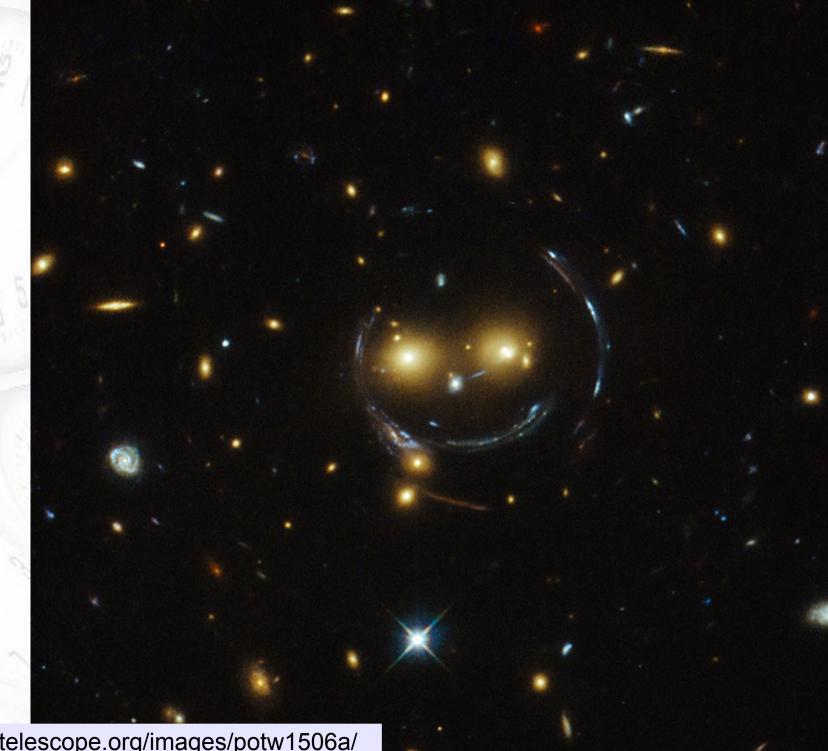
光がまっすぐ 進まないと、 どんなふうに 見えるかな??


←あなた

ブラックホールが後ろにあるものの像を どう歪めるか、 シミュレーション

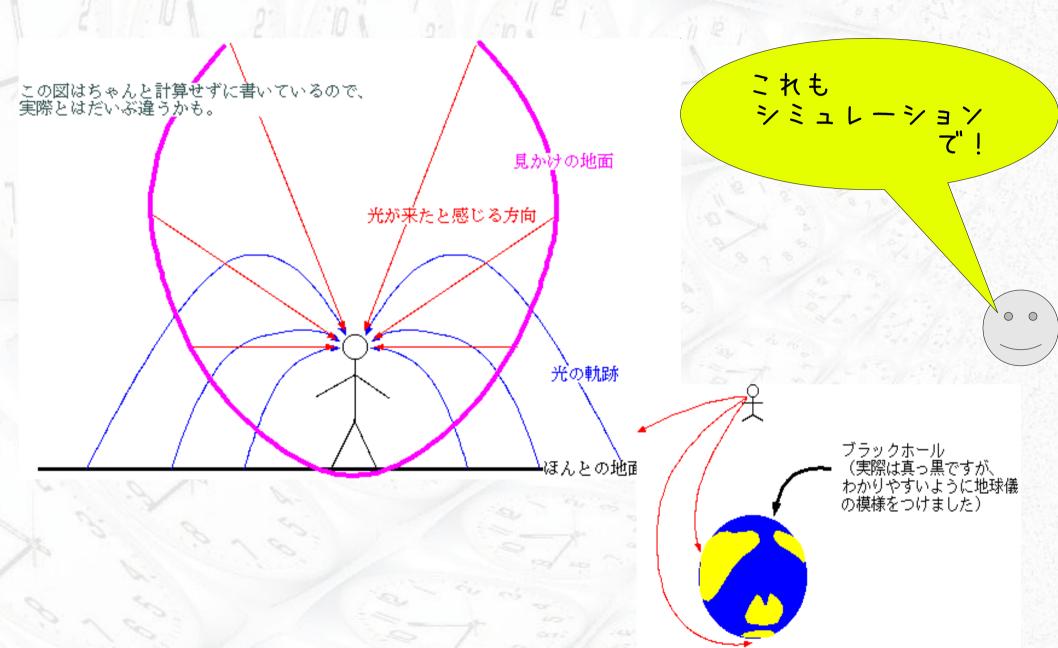
拡大可ver.

ブラックホールは見えますか?

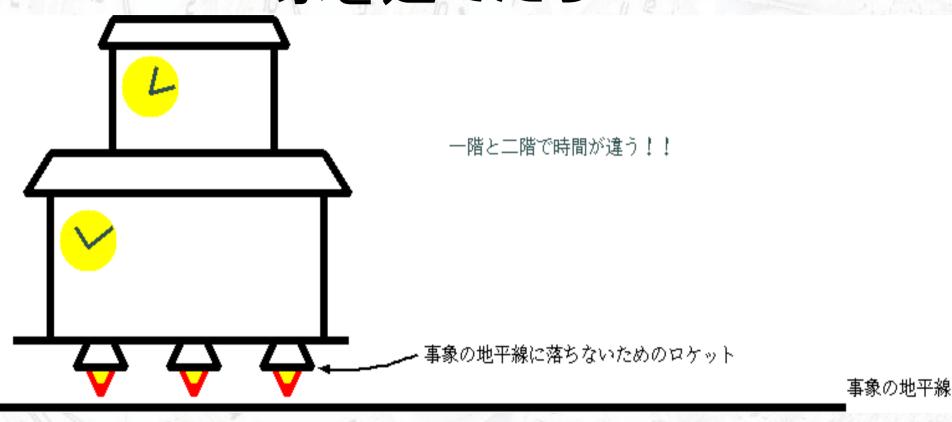


ブラックホールが光を出さなくても、後ろにある星の光を曲げるので、そこに「光を曲げるもの」があることはわかる

ハッブル 望遠鏡で 撮影された


Smiling galaxy

顔の輪郭に 見える丸は重力レンズ 効果により 銀河の姿が 曲がって 見えている



https://www.spacetelescope.org/images/potw1506a/

ブラックホールの風景

もしブラックホール表面に 家を建てたら?

1階で1時間の間に2階では2時間が経過。明日までの宿題があるなら、2階でやろう。

でもこの手を使いすぎると、同級生より老けるのが速 くなるので注意

ものすごく大きい、と思われがちだが、、、、

シュワルツシュルト半径は 質量Mに比例。

重力は質量に比例し、 距離(半径)の自乗に反比例

ということは、表面での重力は質量に反比例

つまり、大きい ブラックホールほど、 逆に表面の重力は小さい!

表面重力の概算

万有引力定数 6.67×10⁻¹¹ m³ s⁻²kg⁻¹

質量 シュワルツシュルト半径 表面重力加速度

地球 6×10²⁴kg 約9ミリ

2×10 30 kg 約3 キロ

1.5×10⁻¹³ m/s²

銀河系 4×10 ⁴² kg

太陽

約6×10 15 メートル

約8m/s²

5×10 18 m/s2

銀河系サイズのブラックホールは、表面を歩ける!!

ただし、足を事象の地平線内に踏み入れたら、抜けません。

ブラックホールに関する様々な誤解

ブラックホールは重力が強い

強いとは限らない。むしろ大きいブラックホールほど、重力は小さい

ブラックホールは見えない

実は見えます。ブラック ホールは光を曲げるの で、背景がゆがむので す。

ブラックホールからは何も出てこかい

実は量子力学を使うと、少しずつ 質量が減ることがわかります。 (今日は話してません)

よくある質問

ヨーロッパで ブラックホールを造る 実験をしているという 話ですが、危なくない んですか?

> 地球がなくなったりは しないから、 安心してね。

まず、「ブラックホールを造る実験」をしているわけではありません。ヒッグス粒子という粒子を探す実験なのですが、

「もし、ある理論が正しければ、そのエネルギーでブラックホールができる」

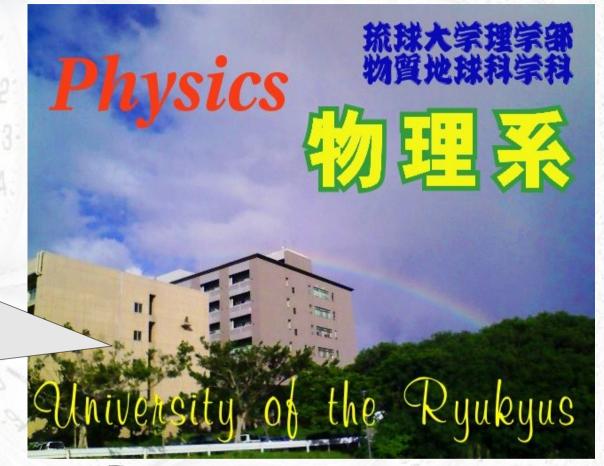
と言われているだけです。

あくまで仮定の話ですし、最初にそう言った人も「たぶんできない」と言ってます**。**

それに、できたとしても全然危なくありません!!

できるブラックホールは、素粒子を作る過程で生まれたのですから、所詮素粒子サイズの質量しかありません。素粒子サイズの質量のブラックホールの出す引力は、同じ質量の素粒子の万有引力と全く同じです。

ブラックホールは なんでも吸い込むん じゃないの?? ブラックホールに入ってしまえばね。でも素粒子程度の弱い万有引力では、近くの物体を引き寄せることもできないので、そもそもブラックホールに入ってしまうことも(よっぽど運悪くたまたまうこを通らない限り)ないのです。


おしまい

現代物理は、我々の「常識」 を越えるところまで探求しよ うとしています。

大学で物理を勉強すれば、 もっともっと現代物理に近づ くことができます。

興味のある人は是非来てね。

-緒に勉強しましょう!

この講義の内容を後で見てみたい、と思った人は

http://www.phys.u-ryukyu.ac.jp/wiki/

(「琉球大 物理」で検索すれば出てきます↑)

の「公開講座・出前授業」の項目を見てください。