強磁性体 EuPd₂ と EuPt₂の単結晶育成と圧力下電気抵抗

¹ 東北大金研,² 琉球大院理工,³ 阪大低温セ,⁴ 東京大院理, ⁴ 東大物性研,⁵ 電通大,⁷ 琉球大理,⁸ 神大院理

仲村愛^{1,2}, 安次富洋介², 赤嶺拡², 本多史憲¹, 青木大¹, 竹内徹也³,

松林和幸^{4,5}, 上床美也⁴, 立津慶幸^{2,6}, 眞榮平孝裕⁷, 播磨尚朝⁸,

辺土正人7,仲間隆男7,大貫惇睦7

希土類化合物は一般的に 3 価であるが, Eu 化合物は 2 価が安定で S = 7/2 の磁性を示 す.しかし, Eu 化合物の 2 価と 3 価のエネルギー差は小さいので圧力を加えると 3 価に 価数転移することが知られている。例えば体心正方晶 ThCr₂Si₂ 型結晶構造の EuRh₂Si₂ や EuNi₂Ge₂ 等は, 圧力や温度などの外部パラメータによって Eu²⁺ から Eu³⁺ へ価数転移す ることが報告されている。EuRh₂Si₂ では, P = 1 GPa の圧力下で室温から温度を下げてい くと, $T_v \simeq 30$ K で Eu²⁺ から Eu³⁺ に近い電子状態へ一次の価数転移を示す [1].また, EuNi₂P₂ では, Eu の価数は室温の 2.25 価から低温で 2.48 価へ温度変化し,これまでの研究 から,電子比熱係数 $\gamma \simeq 100 \text{ mJ/(K}^2 \cdot \text{mol})$ や熱膨張の異常から近藤効果に基づく重い電子状 態が提唱された [2]. ごく最近では、同じく体心正方晶である EuGa₄ は臨界圧力 $P_c \sim 6$ GPa 以上の圧力下で価数転移が起き、 P_c 付近で重い電子状態となっていることが示唆されてい る [3].

本研究の EuPd₂ と EuPt₂ は立方晶ラーベス相構造であり,常圧でそれぞれキュリー温度 $T_{\rm C} \sim 80$ K および 100 K の強磁性体として報告されているが,これまでの研究は多結晶試料 での研究であった [4, 5].本研究では EuPd₂ と EuPt₂ の詳細な物性と圧力下の電子状態を 明らかにするために,単結晶を育成し電気抵抗測定,磁化率・磁化測定,ドハース・ファンア ルフェン (dHvA) 効果測定,圧力下電気抵抗測定を行った.

今回, EuPd₂ と EuPt₂ は, 原材料をモリブデンるつぼに封入し, 約 1500 °C でのブリッジマン法で初めて単結晶育成に成功した.育成された単結晶試料の大きさはおよそ 1.0~1.5 mm角であった.電気抵抗測定は "4 端子法"を用い,磁化率・磁化測定はカンタム・デザイン社製の SQUID 磁束計で測定した.比熱測定は EuPd₂ および EuPt₂ でそれぞれ "疑似断熱法"および "緩和法"である.dHvA 効果測定は "磁場変調法"を用い,5 T から 13.5 T の磁場範囲で測定した.また,8 GPa までの圧力下の電気抵抗測定はキュービックアンビルセルを使用し,圧力媒体はフロリナート (FC-70:FC-77=1:1)である.

図 1 に EuPd₂ および EuPt₂ の電気抵抗の温度依存を示す. それぞれ $T_{\rm C} = 74.4$ K および 99.0 K で電気抵抗に急激な減少が現れており, $T_{\rm C}$ で比熱にラムダ型の転移を示す. 磁化率 および磁化測定の結果から, EuPd₂ および EuPt₂ は飽和磁気モーメントが 7 $\mu_{\rm B}$ /Eu であり

 Eu^{2+} の強磁性体であることがわかった.また, $H \parallel \langle 100 \rangle$, $\langle 110 \rangle$, $\langle 111 \rangle$ 方向で異方性がほ とんどなく,磁化容易軸は決定できなかった. $EuPd_2$ では dHvA 測定を行い,dHvA 振動が 観測された.図2に EuPd₂の dHvA 振動とそのフーリエスペクトルを示す.主要な dHvA ブランチが観測されており,ブランチはスピン分裂している.dHvA 振動数の角度依存性か ら閉じたフェルミ面が予測され,それは SrPd₂のバンド計算の結果でよく説明できることが わかった.さらに, $EuPd_2$ および $EuPt_2$ の圧力下での電気抵抗測定では,それぞれ8 GPa まで圧力増加とともに T_C がほぼ直線的に上昇し Eu^{2+} が安定的であることを示していた.

参考文献

- A. Mitsuda, S. Hamano, N. Araoka, H. Yayama, and H. Wada, J. Phys. Soc. Jpn. 81, 023709 (2012).
- [2] Y. Hiranaka, A. Nakamura, M. Hedo, T. Takeuchi, A. Mori, Y. Hirose, K. Mitamura, K. Sugiyama, M. Hagiwara, T. Nakama, and Y. Ōnuki, J. Phys. Soc. Jpn., 82, 083708 (2013).
- [3] A. Nakamura, T. Uejo, F. Honda, T. Takeuchi, H. Harima, E. Yamamoto, Y. Haga, K. Matsubayashi, Y. Uwatoko, M. Hedo, T. Nakama, and Y. Ōnuki, J. Phys. Soc. Jpn., in press.
- [4] A. Iandelli and A. Palenzona, J. Less-Common Met. 38, 1 (1974).
- [5] H. de Graaf et al., Physica **100B**, 81 (1980).

図1 EuPd₂ および EuPt₂ 単結晶の常圧での電気抵抗 ρ の温度依存性.

図2 EuPd₂のdHvA 振動とそのフーリエスペクトル.