1. Interpolating polynomials

Definitions: (interval, continuous function, abscissas, and polynomial)

x € R, real number; I = [a,b] C R, an interval;
f I — R, continuous function.

zo, 1, T2, -+, n € I n+ldistinct points (abscissas).
Polynomial of degreen, pn(z), isalinear combination of {1, z, 22, ---, 2"}
pn(z) 1= ag + a1z + apz?® + - + ana”

Theorem. (existence and uniqueness of interpolating polynomial)
There exists aunique polynomial of degree at most n, pn(z) , that satisfies

pn(x;) = f(x;), foreachi=0,--- n.
Wecall pn(z) theinterpolating polynomial.

Excl-1) Prove the above theorem.



 Lagrange form of interpolating polynomial.
(Hasasimple form and useful for the error estimation.)

Derive an interpolating polynomial for points, (z;, fi), i =0,---n, f; = f(x;)

Defining the Lagrange polynomial by
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Lagrange form of interpolating polynomial iswritten

pn(z) = Y Ly () f;
i=0

Theorem: (Interpolation Error)
If afunction f iscontinuous on [a,b] and has n+1 continuous derivatives
on (a,b), thenfor V xe[a,b], 3 &(x)&(a,b), such that

peLlce) = |

f(z) = pn(z) +



* Newton form of interpolating polynomial.
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k=1 =0

We construct an interpolating polynomial for f(x) in the above form, that is,
pO,---,n(x) satisfies pO,---,n(xk) = f(zp)

Definition (Divided difference)
The zeroth divided difference w.r.t. the point z; iswrittenf[z;] = f(«;).
The kth divided difference of f w.r.t. the points i, z;+1, -, i+, IS
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» Newton form of interpolating polynomial iswritten

n k—1
pO,---,n(aj) = f[CEO]+ Z f[w07$la"'7xk] (aj_ajz)
k=1 =0

namely, ar = flzo,z1, -, xi]

Newton form is more efficient; fewer operation to determine its coefficients.
Particularly, when a new data points become available, Newton form allows
them to be incorporated easily.

o Interpolation error in Newton form can be derived as follows:

If f(z) € C"t1(a,b), 3P0, .. n+1(x) With abscissas zg, -, zn,t

n

pO,---,n—I—l(x) = pO,---,n(x) + f[x07 L1,y In, t] H (CC—ZCZ)
1=0

At the point t, f(t) = pg.... n4+1(t). Writing t = =,

f@) = po,e (@) = flwo,- - an,2] ]] (@ — i),

1=0



Exc 1-2) Derive the Newton form of interpolating polynomlal
.n(®) = flzol + Z flzo, 21, -, =] H (z—2;).

k=1 =0
Exc 1-3) Show, for any permutation mg,mq,---,my of 0,1,---.,k

f[$m0,$m17 RS 7$mk] = f[x07x17 5 ,ZEk]

Exc 1-4) Check that the interpolating error formulain Newton form
(@) = po,..a{®) + flzo, - - -, #n, 7] ]] (& — 25)-

1=0
Isidentical to (nt1) ()
_ Fr g B
f(x) = pn(z) + (T 1) 'H(
hint: apply the generalized Rolle stheoremto g(z) := f(z) — po,....n(2)
™ (€)

to ShOW 36 € (a,b), g.L. f[an T 73371] = |
2



Limitation of the interpolating polynomials

e Runge's phenomenon.

When approximating the function f(x) on [a,b] by an interpolating
polynomial, an error does not necessary decrease as increase the degree
of polynomial. The interpolation oscillates to the end of the interval,

|

= , defined on an interval [—1, 1],
o) =T 58,2 ]

lim [ max r)— P, (r) | = 0.
n—oo (—1£r£1|”ﬂ ' n '|)

Also consider afunction f(z) = M gn [—1,1],
which issingular a x = 0.

cf) Gibbs phenomenon

When approximating a periodic piecewise differentiable function f(x)
by the Fourier series, an error near to the discontinuity of f(x) does not
decrease as increasing the number of Fourier series.



Some more theorems.

Theorem: (Weierstrass)

Vf(z) € Cla,b], and Ve > 0,
dp(x) a polynomial such that |p(z) — f(z)| < € for Vz € [a, b].

|dea of a proof) A following polynomial has this property.

n

pn(z) == Y f(i/n)bp; = > f(i/n) nCiz'(1 — )",

1=0 =0
The Bernstein polynomials{by,;} converges uniformly to f(x) on [0,1]

Theorem: (Faber)

Thereisno universal node matrix (which is a sequence of abscissas
with increasing points), for which the corresponding interpolation
polynomials convergesto V f(x)eCl[ab] .



How to overcome the problem.

(1)

(2)

Use optimal points for abscissas for the interpolation:
Chebyshev points (roots of Chebyshev polynomial) minimize ¢~ norm,

1) = pu@lloe == max |(z) = paa)|

TE|a

Roots of Legendre polynomial minimize ¢, norm,
148

i) — maladfls = [ ["17@) = poe) e

Use piecewise polynomial interpolation with lower degree, such as
Piecewise linear interpolation, Spline interpolation,
Hermite interpolation.

ex) Cubic Hermite: Interpolation si(z) = ag + a1z + aza® + aza>

Interpolate f(x) on [a,b] with subintervals [z;,z;41] assuming that
f(z) and f'(z) are given at each z;. Each subinterval [z;,z;41] has
different coeffients a; : = 0,1, 2,3, which are determined from

4 conditions f(z;) = s;(z;), f'(z;) = 8;(331) at @ = 3,

and f(z;41) = si(w;41), f'(wi41) = si(w41) at © = 241,



Excl-5) Programing:

a). Make a code for the interpolation polynomial in Lagrange form
and Newton form. (It is allowed to use a code from the lecture.)

b). Compare execution time. Check if your procedure is optimal.

c). Using Chebyshev points, estimate errorsin ¢« and ¢, norm,
for different degrees of interpolating polynomial n such as
n=2"n=2to7

d). (optional) Using the roots of Legendre polynomial, redo c).

Excl-6) Numerically confirm that the interpolating polynomial based on
the Bernstein polynomial converges to the Runge’ s function on
[-1,1].
(Note: the Bernstein polynomials in this note is defined on [0,1].)



