
1. Interpolating polynomials 

Polynomial of degree n,           ,  is a linear combination of 

Definitions: (interval, continuous function, abscissas, and polynomial)  

Theorem. (existence and uniqueness of interpolating polynomial)

There exists a unique polynomial of degree at most n,           , that satisfies

n+1 distinct points (abscissas).

We call              the interpolating polynomial. 

Exc1-1) Prove the above theorem. 



• Lagrange form of interpolating polynomial.  
(Has a simple form  and useful for the error estimation.)

Defining the Lagrange polynomial by 

Lagrange form of interpolating polynomial is written 

Derive an interpolating polynomial for points,

Theorem: (Interpolation Error)
If a function  f is continuous on [a,b] and has n+1 continuous derivatives 
on (a,b), then for  � x � [a,b], � � ξ(x) � (a,b), such that



We construct an interpolating polynomial for f(x) in the above form, that is, 

satisfies 

• Newton form of interpolating polynomial.   

Definition (Divided difference)

The zeroth divided difference w.r.t. the point      is written

The kth divided difference of f w.r.t. the points                       is



• Newton form of interpolating polynomial is written    

namely,

Newton form is more efficient; fewer operation to determine its coefficients.  
Particularly, when a new data points become available, Newton form allows 
them to be incorporated easily.

• Interpolation error in Newton form can be derived as follows:



Exc 1-2) Derive the Newton form of interpolating polynomial, 

Exc 1-3) Show, for any permutation 

Exc 1-4) Check that the interpolating error formula in Newton form 

is identical to 

hint: apply the generalized Rolle’s theorem to 

to show 



• Runge’s phenomenon.

When approximating the function f(x) on [a,b] by an interpolating 
polynomial, an error does not necessary decrease as increase thedegree 
of polynomial. The interpolation oscillates to the end of the interval, 

Limitation of the interpolating polynomials

cf) Gibbs phenomenon

When approximating a periodic piecewise differentiable function f(x) 
by the Fourier series, an error near to the discontinuity of f(x) does not 
decrease as increasing the number of Fourier series. 

Also consider a function 

which is singular at x = 0.



Theorem: (Weierstrass)

Idea of a proof)  A following polynomial has this property. 

The Bernstein polynomials { bn,i}  converges uniformly to f(x) on [0,1]

Theorem: (Faber)

There is no universal node matrix (which is a sequence of abscissas 
with increasing points), for which the corresponding interpolation 
polynomials converges to � f(x) � C[a,b] . 

Some more theorems.



(1) Use optimal points for abscissas for the interpolation:

Chebyshev points (roots of Chebyshev polynomial) minimize 

Roots of Legendrepolynomial minimize 

(2) Use piecewise polynomial interpolation with lower degree, such as 

Piecewise linear interpolation, Spline interpolation, 

Hermite interpolation.  

ex) Cubic Hermite: Interpolation 

How to overcome the problem.



Exc1-5) Programing:

a). Make a code for the interpolation polynomial in Lagrange form 
and Newton form. (It is allowed to use a code from the lecture.)

b). Compare execution time. Check if your procedure is optimal.

c). Using Chebyshev points, estimate errors in 

for different degrees of interpolating polynomial n such as

n = 2n , n =2 to 7

d). (optional) Using the roots of Legendrepolynomial, redo c). 

Exc1-6) Numerically confirm that the interpolating polynomial based on 
the Bernstein polynomial converges to the Runge’s function on 
[-1,1].  
(Note: the Bernstein polynomials in this note is defined on [0,1].)


