5. Integration method for Hamiltonian system.
Consider the integration of Hamiltonian system in which the energy is conserved.

In many of formulas (e.g. the classical RK4), the errors in conserved
guantities (energy, angular momentum) accumulate in time.

A numerical integration scheme that conserves the energy may be
suitable for solving particular problems.

ex) A long-term stability of the planetary system.

Symplectic integration method and Symmetric integration method are
known to have this property.

Numerical
solution
for the
harmonic
oscillator,
d?z

w2 = e

0
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e Comparison of 2" order symplectic method and Runge—Kutta method



d2x dy

e Hamiltonian system has pure imaginary eigenval ue, 5 = —kz — - Ay

* When astable numerical method is applied, an oscillatory solution often
tends to be dumped or diverges.

o |f theregion of stability of the method includes the imaginary axis, the
numerical solution oscillates correctly.

Cf.) Some methods suitable for 2" order ODEs.

e Stormer-Cowell method.

d2y
—= = f(t,y) —
2 = f(ty)

Extremely high precision formulas O(h'#), O(h') are used in the
celestial mechanics. Amount of floating operations, memory, are
about a half of Adams methods.

Ex) Verlet Method :  wi41 — 2w; + w;_1 = h*f;

W41 — 2W; + W]
h2

m
= > bifit1-j
i=0

* Runge-Kutta-Nystroem method.
Better accuracy for the same level RK formula, less memory.

Exc 5-1) Show that the Verlet method and |leap flog method are the same.



Hamiltonian system.

g : coordinate of dynamical system. ( ¢ := %.)
p . conjugate momentum. ( p:= %—g. L : Lagrangian.)
Hamiltonian : Hamilton's ( dg¢ _ 0H Poisson bracket:
H(p,q) =T() +U(@)  equation. | @ 9P {f, g} = 9799 919
at~  oq 4 _of
. i ’ 7t - a:. H7
dtf(p q,1t) 5 ~ U S}
* Rewriting Hamilton’s equation,
1
% = Dyy={y,H}, where Dy :=—{H, -}, y:= ( 2 )
at

aformal solutioniswritten y(t) = exp[tD ] y(0).
The operator exp[tD,,] iswell defined in the following sense;
exp[tDy] == ) il(tDH)" and since %DH:(/ — DHZ—?Z

=0 "
o ()
y(t+ 1) = exp[hDyly®) = 3 2 nl(t)h".

n=0




Symplectic formula.

o For the Hamiltonian H(p,q) = T(p)+U(q), we have Dy = Dp+Dy;.
o A symplectic map exp[hDy] : y(t) — y(t+h) can be approximated
by two subsequent symplectic maps exp[hDy] and exp[hDy/];

q(t) + n%E )

expLhDr] ¢ y(t) s y(t + h) = (
p(t)

q(t) ) . ( q(t + h) ) B q(t) + ha—p(t)
p() p(t + h) p(t)—'hégg(t4—h)

exp[hDU] exp[hDT] . (

becomes 1st order symplectic formula.

cf) Theorem: (Liouville)
For a symplectic map, exp[tDg] : y(0) — y(t),

the volume of phase space is invariant, [dq(0)dp(0) = [dq(t)dp(t),
d(q(t),p())

9(q(0),p(0))’
, I identity.

i.e Jacobian detM =1, where M =

O I

T: —_
or MJM J, where J I o0



Exponentia law for the non-commutative operators.
For non-comutative operators A and B, the exponential map

exp[h(A + B)] can be decomposed into the infinite products
k

exp[h(A+ B)] = lim ][ exp[a;hA]exp[b;hB],
k— o0 i—1
where a; and b, are constants.

e Symplectic integration formula approximate this infinite products by
finite products as

exp[h(A+ B)] = H exp[ a;h Al exp[b;hB] + O(R"T1),
=1
The number of product, k, is taken large enough to have a desirable order

truncation error O(h"*1).
(For thisformula, the local truncation error ist = O(h").)

Exc 5-2) Show that the 2" order symplectic formulais the same as
the Verlet method.

Exc 5-3) Check if the symplectic formulas generated by the symplectic maps
exp[ 2Dy] exp[ hDy] exp[ 2D7] and exp[ D] exp[ hDr] exp[ 2Dy/]

are the same.



Why the symplectic formula conserves energy?

Theorem : (Baker-Campbell-Hausdorff formula) Any finite prod-
ucts of two symplectic maps of non-comutative operators For non-
comutative operators A and B, the exponential map exp[A] = e 1=

— A" 7 _ A B
-oe =e’e is solved for the operator Z,
n.
=0

T =
n rilsil- - rplspy!
Ti+5i>0
1<i<n

n=1

Therefore, for each symplectic formula, 3D such that

k
exp[hD] = [] expla;hDy]exp[b;hDy].
=1
This means that the symplectic formulais associated with the Hamiltonian
of the different dynamical system. D = Dy + h? 1Dy + O(hP+2) or
H' = H+ hT1H,+ O(hT2). H # H.
Exc 5-4) Integrate harmonic oscillator using some symplectic formulas, as
well as the other non-symplectic formula of the same order.

Then compare the conservation of the energy in time.



Some systematic decomposition method for the exponential products.
k

exp[h(Dr + Dy)] = [] explaihDr]explbhDy] + O(R™ 1)
1=1

= Su(h) + O(R"THh).
S1(t) = exp[hDp]exp[ hDy/]
So(t) = exp[2Dr] exp[hDy] exp[ 2D7]

(1) Sn(h) = Sp_1(snh) Sn_1((1 — sn)h),

1
where sl' 4+ (1 — sp)" =0, sp

T 14 exp(im/n)

(2) Sn(h) = Sp—1(snh) Sp—1((1 — 2sn)h) Sp_1(snh),

1
where 2s* 4+ (1 — 2s,)" =0, sp = :
nt( ) T 212

(3)  Su(h) = Sp_1(snh) Sp—1(snh) Sp—1((1 —4sn)h) Sp_1(snh) Sp_1(snh),
where 450 + (1 — 4s,)" =0, sp = L

= "
Formulas (2) and (3) are symmetric, S(h) S,(-h) =1




Sympl ectic formula with symmetric decomposition.

Consider a relation between even (2n) and odd (2n-1) levels.

exp[h(Dr + Dy)] = San—1(h) + h*"Ron(Dr, Dy) + O(h*"T1).

If S»,,_1(h) is symmetric decomposition S»,,_1(h) So,,_1(—=h) =1,

exp[h(Dp + Dyr)]lexp[ —h(Dp + Dy)] =1
= | Son—1(h) + h®*Rou(Dr, Dy) + O(R?" 1) |
x | S2n—1(=h) + h*"Ro,(Dr, Dy) + O 1) |
=1+ h®" [So;,—1(h) Ron(Dr, D) + Ron(D7, D) Sap—1(—h)]
+O (R,
hence, Sz,,—1(h) Ron (D7, Dy) + Rop(Drp, Dyy)Son—1(—h) = O(h) for
any h, that is, Ry, (D7, Dyy) = 0.
Formulas (2) and (3) becomes

(2) S2n(h) = Sop—1(h) = Sop—2(s2n—1h) Szn—lz((l—QSQn—l)h) Son—2(82n-1h),
where 25" 4 (1 — 2s,,)™ = 0O,

By = m
(3) San(h) = Sop—1 = [San—2(s2n—17)1% Sopn_2((1—4s2,—1)h) [San—2(s2n—1h)]?,

1
where 457 + (1 — 4s;)" =0, sp= —r.
m ) T4



Symmetric integration formulas

A few drawback of the symplectic formula
— Difficult to change the time step size h.
Once change the step size, the formulais no more symplectic.

— floating operation is way more than the multistep method of
comparable order.

d
x The one-step method for the 1st order ODE, d—?z = FL& 4,
wi41 = ¢(t;, w;, f,h) is time symmetric if w; = ¢(t;41, wig1,—f, h).

Ex) Trapezoidal formula
d2y

x The multistep method for the 2nd order ODE, o= f(t,y),
m m
Z AjW;41—5 = h2 Z bjfi—i—l—j IS time symmetric,
7=0 =0
if a; = a,,—; and b; = b,,_; for 1 = 1,---,m are satisfied.
Symmetric formula
—the error in the energy is bounded ssimilar to symplectic formula
— No difficulty in changing the time step size h.



Symmetric integration formulas (continue)

* Hermite type formula — combines Hermite interpolation formula
and Taylor’'s method.
2(1f

The 2nd order Taylor: w;41 = w; + hf(t;, w;) + — Y

——{3,w3)

The 2nd order Hermite: w;41 = w; + (fZ + fivi)+ —(fZ z’+1)°

—An implicit formula. Symmetric.
— Direct iteration can be used.
— relatively ssimple coding and decent accuracy.

Exc 5-5) Derive the above 2" order Hermite formula

— Method for changing step size in symmetric formula.
— Stability of symmetric formula— linear stability and P-stability.



