A note on an initial data code for
compact stars in numerical relativity.

Kaji Uryd (UWM)



T his note :

Mathematical modeling of the quasiequilibrium solution for the rotating
compact star, BNS, BH-NS and so on that may be used as the initial

data.

Astrophysical spects is not included in this note.

e A review.
e Formulations of the problem.

e A numerical method.



Review : (quasi)equilibrium solutions I



e A classifying catalogue for (quasi)equilibrium solutions.

Configuration

EOS for fluid

Flow field

Gravity <

2

\

N\

N\

\

Ellipsoidal figures
... (exact solution, virial method, variational method)

Perturbative expansion -« -« ... ... (semi-)analytic
Hydrostatic (stationary) equilibrium - - - numerical
Incompressible fluid - - - p = const.

Polytropic EQS .- .- . p = kpttl/n

nuclear EOS - .. .. ... tabulated or fitting formula

Co-rotation (synchronous rotation)
Irrotation  (counter rotation)
Arbitrary spin

Differential rotation

Newtonian
Post-Newtonian (A single star
IWM formalism Equal mass

. . . Components ¢
Stationary, axi-symmetric Unequal mass
Waveless formalism | BH-NS

Helical symmetry



3+1 decomposition and
York-Lichnerowicz conformal decomposition.




(J\/l,gaﬁ), globally hyperboric spacetimes that have a timelike t¢.
> = > . a Cauchy surface transverse to t“.

vou(t): the spatial metric on ;.

n®: the future-pointing unit normal to this foliation.

Spacetime tensors that are orthogonal on all of their indices to n® are
identified with spatial tensors on > ;. In particular the projection of

Ya8 = Yab + Nang orthogonal to n® is associated with ~,;(2).

Since t® is transverse to >, one can introduce non-vanisheng lapse «
and a shift g%, as t* = an® 4 (3%, where 3%ny, = 0 a vector on 2.

In a chart {¢,z'}, for which X is a t = constant surface, the metric is

ds® = —a?dt? + v (da’ + B'dt) (da? + B dt).

gag 1S 4D metric of M, v, is 3D spatial metric of 2.



o A summary of notations.

t . parametrize foliation 2_;.

t* 1 a generator of a map x¢ : X, — X¢, normalized as t*Vqt = 1.

n® . the future-pointing unit normal to the foliation. no = —aVat.

« . alapse. B¢ : ashift. t% relates to n® by t* = an® + %, %y = 0.
Yap - @ SPatial metric on ;. (The projection tensor v,3 = go3+ nang.)
K, © the extrinsic curvature of 2; given by K, = —%sﬁn%b

Aqp: a trace free part of K, K: a trace of Ky, Ay = Ky — 370K
3.5 . the conformal metric defined by ~,;, = ¥%9,.

A, a conformal weighted A, A, = ¢¥* A, also K, = 4K,

fap - the flat metric A, =0 — fap -

_ ¢}
D¢, Dq, Dy @ the covariant derivatives associated with v, Y4 and fp-



(O Formulation.

o T he field equation Ga5 — 87rTa5 is projected to > and its normal n©.

Hamiltonian constraint : (Gop — 87T ,5)n%nP =0,
Momentum constraint : (Gop — 87T 5)7%an” = 0.
Trace of a projection to X : (Gop — 87rTa5)(7045 + n%nf) = 0.

Tr free part of a projection to = : (Gog—81Thg) (Y*av’y— 3vap7™?) = 0.

Solved for the metric {¢, 8%, o, 3,4} on a slice =, in a chart {t,z'},

ds? = —a?dt? + ¢*75;;(dz’ + Bldt) (da? + Fdt).

o Gauge conditions:

(1) a temporal gauge (slicing condition, e.g. the maximal slice K = 0).
O
(2) three spatial gauge (e.g. the Dirac gauge D,9% = 0).

o A condition to specify the conformal decomposition:
det(7,,) = det(fp),  (fu: a flat metric. )

( Aap = Y %y the confomally rescaled spatial metric.)



o Evolution equations.

In 341 formulation used in numerical relativity, {y., ¥, A4, K} are con-
sidered as “dynamical” variables. (cf. {y4, 7®} in ADM.)

o From the definition, Ko, = —4£nyap, With 7 = f.

Trace part : (0t — £3) In W® = —aK,
Trace free part : (9t — £8)Yap = —20 Ay,

o Spatial components of the Einstein equation.
(Gap — 877Ta5)(70‘5 + no‘nﬁ) =0 :
- 1
(0t — £3)K = oz(AabAab — ng) — DgD% — 4mma(py + S),

1
(Gag — 81Tog) (Y ay’) — g%mo‘ﬁ )=0:

(O — £5) Aoy = a(K Ay — 2A0cA,) + b *[aRyp — DaDyor — 8maSy, ] TF

Note: some of £3 are operating to tensor densities with different weights.



Separate out a flat Laplacian for h from R

Split Ry, as Ry, = 3Ry —|—3R 3R, : Ricci tensor associated with 7.
2 - =~ L 2 -~ 6 ~ =~ 2 o <
Ry, = 7 DaDy — Ay D"Dets + 5 Datb Dy — Ty 5 Do D

35 1o Lo~ ey | D /=~ ey ANL
Rab:_gAhab_E[Db(VaCF)+Da(7ch )]+Rab

O = D ~ab __ D hab OA — abﬁ B ~ ~ab ab ab
— =f alt’b; Yab — fab+hab7 = 7R
1 o O O O o O O
RNL = —E(Dthchhad + DahDchyy + h4DeD jhyp) — DaCS,
1 o 0
+CCCLchCZZc_OcCLZcCI§d - E[Db(hach) + Da(hchc)] + FCCc,ab

~cd
o
ab — —(Dahdb —+ Dbhad Ddhab) and CC ab = /YCdCab

Dirac gauge F* =0, dety,, =detfy, Cp, =



o Role of the Bianchi identity in 3+1 formulation.

In 341 formulation, the (contracted) Bianchi identity, V[;Gﬁa = 0,
implies that the constraints are automatically satisfied in D(S) the
domain of dependence of S € 2 if the constraints are satisfied on
S initially, and the fields are evolved solving the spatial part of the
Einstein equations in D(S).

This can be seen as follows: As a consequence of the Bianchi identity,
we have V&P, = 0, where £, 1= G5 — 811,53 = 0.
C:=(Gup— 87rTa5)nO‘n5 (Hamiltonian constraint: 'H = \/— C.)
Co = (Gog — 81 Ty3) Vs n" (Momentum constraint: Cq, = \/_ 0.)
Eap = (Gop — BT Tp5) 7"
Projections of Vﬁé’ﬁa = 0 to n® and the hypersurface > become
nVgly = —£,C + KC + éDa(QQCG) + K¢, =0,
aaV5€6a — _£n0a _I_ KCa _I_ CDa INn o —I_ éDb(Q{ng) — O,

Hence, C=0and C,=0o0on Sex and &, = 0in D(S), then 9;C =0
and 0;C, = 0, meaning that constraints are always satisfied in D(S).



o 3+1 decomposition of the steress-energy tensor.

The decomposition of the stress energy tensor Ta5 are defined by

PH = Taﬁnanﬁa Ja ‘= — ozﬁ%tanﬁa

Sab 1= Taﬁ’yaa’ybﬁa S = a57a5 — Sab’yab-

ex) A perfect fluid stress-energy tensor

Top = (€ + pluaug + pgns,
where u®: 4 velocity, p:. fluid's pressure, e. energy density.
Writing «® = u!(t® 4+ v®) with a spatial velocity v*nq, = 0, we have

ung = —aul, uYaa = u'(Ba + va).
o = hp(au')? —p,
Ja = hpa(ut)z(ﬁa + ’Ua)7

Sabp = hp(ut)z(ﬁa + va) (Bp + vp) + PVap
hpl(au')? — 1] 4 3p.

U
I



Initial data on a conformal flat slice|



Initial data constructionl

Data on the initial slice has to satisfy constraints (G ,g—8nT,g)n =

For the most of black hole initial data, only these four constraint
equations are solved.

(O Isenberg-Wilson-Mathews (IWM) formulation.

e 4 constraints and the spatial trace of Einstein equations are solved
for spatially conformally flat metric on a maximally embedded slice 2,

ds? = —a?dt? + o f;;(dz’ + Bldt) (dx? + B dt),
Jijo flat metric.

(5 components of the metric coefficients are solved. Stationary con-
dition in rotating frame is assumed for the fluid equations of motion.)

e IWM formulation agrees with GR in a static and spherically symmetric
spacetime, and with the first post-Newtonian approximation.



O Initial data in IWM formulation.

e For the metric, ds? = —a?dt? + ¢*f;;(dz’ + B'dt)(dz’ + B/dt), four
constraints and the spatial trace of the Einstein equation are solved.

(Gap — 8%Ta5)no‘n5 =0 :

o 5 2
Ap+ 12 (444" + ZK2) + 270 py =0,
(Gap — 8%Ta5)yaan5 =0 :
o _ l]o o =b bo ¢6 4 o .
Afa + SDaDyf’ +20:A:°DyIn = — ZaDyK — 16maja = 0,
(@7

(Gap — 8%Ta5)(7a5 - %no‘nﬁ) =0:

0 ( 5
A(aw) + 454, K — av® (SApA™ + ZK2) — 2705 (o + 25) = 0.

e We choose K = 0 = 9;:K (maximal slicing). Because the spatial
metric is conformally flat, A, does not involve a time derivative of the

. . 4
spatial metric. Ay, = % <£5be - %fabed;Eﬁfcd) .



(O An equation set for a coding.

Ao = LA A 2y
Y = _E ab — 27~ pH
o 1o o ~b ~ b2 ¢6 .
Afa+ DaDpB’ = —2a4a"DyIn*— 4 167aja
87
2 57 7  zab 5
Alay) = ayp” A A" + 2may®(py + 25)
_ 1 1 1 /o . o . 2 o _
Aa =5 - (Latr = It LpSea) = 5 - (DaBy+ Difia = S fun D)

Indexes of conformal weighted quantities (quantities with tilde) are
raise and lowered using the conformal metric 7.
Yab = fap TOr spatially conformal flat initial data.

B :=p% Ba =B’ = ¥ a8’ = ¢ *Ba,
Aab — Aab, Aab — :)‘/bCAa/C, Aab — ,“)"/CLCACb’
(Aabﬁab — Aabgba — AabAba — AabAab).



(O Shibata decomposition for the momentum constraint.

Often, the vector elliptic operator in the Momentum constraint
IS decomposed to improve the accuracy.

o l]o o _ ~ 1o
For A, + gDanﬁb — S,, introduce 3, = B, + éDa(B — 2'B;) where

O
x® are corrdinates that satisfy Da:cb = fab.

Substituting the decomposition to the momentum constraint, we have
o _ 1o o =b o 1o o b O

@) @) @)
So, we solve elliptic equations AB, = &, and AB—beBb = 0O separatly.
Substituting the formar to the latter we have,
o) ~ 0 ¢6 ‘
ABa, — Sa e —QOéAa, Dbln E— —I_ 167TOéja,,
(87

O
AB = QjaSa.



Stationary condition for the fluid. |



(O Formulation for the fluid.

A perfect fluid is described by its 4 velocity ©v® and stress-energy tensor

Tog = (e + pluaug + pgos;
where p is the fluid’s pressure, e its energy density.

As a consequence of the Bianchi identity, we have VﬁTaﬁ = 0.

A projection of the identity VﬁTaﬁ — 0 transverse to u® with the
projection tensor daf = 9o -+ UaUg, and its projection to u%, give the
relativistic Euler equation, and the mass energy conservation law.

Writing the identity V37" = 0,

VsTo” = (e +p) (W Vgua +uaVgu’) + 6" Vp + uau’ Ve = 0,
these projections are derived
4"V Ty’ =0

1
¢ [(e+p)u’Vauy +Vip]l =0 & qo”[Luug+

e+ p
uangaﬁ =0: u*Vae+ (e4+p)Vau® =0 < £Lye+ (e+p)Luy/—g=0

Vgp] =0



When the fluid is close to an equilibrium, one can derive a simpler set

of equations. Introducing the baryon mass density p, and the specific

enthalpy defined by h := €+—p, the identity VﬁTaﬁ — O can be written

I,
VﬁTaﬁ = p:uﬁvﬁ(hua) + Vap] + huavﬁ(puﬁ)
. 1
= pluPVs(hua) + Vah] + huaV(pu’) — p<Vah - ;Vap>

= p:uﬁvﬁ(hua) + Vaoh] + huavﬁ(puﬁ) — pT'V s,

where s is the specific entropy. In the last line, the local 1st law of

1

thermodynamics dh = T'ds + —dp is used; the last line is correct only
P

for the reversible process. (This should be exact for the perfect fluid

that has no entropy production).

Note that a projection ua[uﬁvﬁ(hua) + Voh] = 0 is trivial. Therefore,
independent components of the equation u5V5(hua) + Vah = 0 (which
relates to the relativistic Euler eq.) are 3, not 4.



We assume that the baryon mass is conserved, Vq(pu®) = 0. Then,

in the local thermodynamic equilibrium, a projection of VﬁToﬁ = 0 to
the 4 velocity u® gives u®*Vas = £45 = 0.

Under these assumptions, the equations for the relativistic fluid become

uPV3(hua)+Veh =0 &  £4(hua)+Vah =0 (h =2 +p>

P
Vs(pu’) =0 & Lulpy/—g) =0
Vas =0 & L£us=0

With an appropariate choice for EOS, a set of fluid equations is closed.

If the isentropic flow, s = const everywhere in the fluid, is assumed,
one can introduce the one-parameter EOS.



(O Statinonary condition for the fluid.

* We assume stationary state in the rotating frame for the fluid source.
Impose a symmetry along k¢ = t¢ 4+ Qo¢% (Equilibrium assumption),

with the 2 = constant.
Li(puty/=g) =0, £ (hua) =0, or £.(ja/7) = O.
Intriducing the spatial velocity v%, the 4 velocity is written

u® = uH(k® +vY), v%a = 0.

e Recall:
¢ — an® _|_ﬁoz,
k¢ = an® 4+ % = an® + 8% + Qo¢“,
wd = B+ Q¢%, the shift in a rotating frame.



o For corotational flow, u® = u'k®, v% = 0, the rest mass conservation
becomes trivial, and the relativistic Euler eq. has the first integral

h
— = const.
u
From the normalization of the four velocity uqu® = —1,

B 1 B 1
\/042 — Waw® \/042 _ ¢4fab oAb

where &% = (% 4+ Qo°.

ut

Y

Cf) U u”* = (ut)anBkakﬁ — (ut)anﬁ(a’na + wa)(anﬁ + wﬁ) — (ut)anﬁ(_QQ + Wawa)

(Exc. Consider how to formulate the differential rotation.)



o Source terms in the field equaitons for corotational flow.

Decomposition of the 4 velocity for the corotational flow u® = utk® is
ung = —out

o _— .t
U Yoa — U W

pn 1= Togn®n® = hp(au')? —p,

ja = —Tapvad*n” = hpa(u’)?we= hpa(u’)?y*@q,

Sab = Tuprdn” = hp(u')2wawy + vap 0 = hp(u')2¢Pwawy, + ¥*3,p p,
S = T,gv™ = hp[(au')? — 1]+ 3p.

where Qg = %b(ﬁb + Q3% = Bu + Q4



o For irrotational flow, hugy = V4P,
(874
Da [f (D — hutwa>] =0,

h
v'De® + — = C = const,
u

where u® = v (k% 4+ v%), v*na =0, w® = B+ Qo™

For polytrope p = kptt1/", h=1+ (n+ 1),
0

(ul is solved from wqu® = —1.)
Velocity potential @ is solved from the elliptic equation with
the Neumann boundary condition.

v*Dgh = 0, along the surface of NS.
(the boundary condition is equivalent withu®V,h = 0 with £, =0 .)



Solving method for binary neutron stars :
A numerical method.




(O Simplistic chart for developing a numerical code.

Writing down all equations used in a numerical computation.
(Also important to look for the normalization of variables and the
choice of parameters suitable for the numerical computation.)

l

Designing a numerical method
(e.g. the initial data code for the netron star:
Choice of coordinates, an elliptic solver,
and an iteration method, etc.)

Typing... perhaps about 3000 — 20000 lines



(O Normalization of the variables and a choice of parameters
— important for making a successful iteration scheme.

We have two parameters : {2,C'}. It is convenient to determine them
by fixing two quantities; the separation and the central density.

one can additionally introduce a length scale Rg for normalization.
we take 2Rg to be the diameter of a NS. 7 :=17/Rg.

For a polytropic EOS, one can rescale (measure) the length scale by
a constant k (p = kplT1/") as Ry := k"/2Ry.

Then all components of field equations are written as follows;
for the fields ¢ (= {y, a, B% hy}).
Ap = Sqglp] + R3 Smls, p, ],

where all quantities are normalized by Rg.
Fluid variable {p, ®}; Parameters {Q,C, Rg}.



(O Choice of coordinates and elliptic solver.
To solve the elliptic equations for the gravitational fields,

(1) any type of Poisson solver would work fine,
(2) coordinate choice may depend on a type of Poisson solver.

Our choice:
We choose spherical coordinates (rg, 64, ®g) Whose origin is the center

of orbital motion, and (rf,ef,qsf) whose origin is the center of each
neutron star.

Then, we use Green’s formula to invert the Laplacian.



(O Coordinates and region for numerical computation.

(rg.8g.%q)

Coordi nates for the
gravitational field

(6=0)

Rotation axis

Coor di nat es
for the star |

s 0 Rin d R out R gmid R g,max



Poisson solver : applying Green’'s formula.
* An elliptic PDE,
A ¢ = S(z),
IS written in the integral form, the Green’s formula,

_ 1 / / 1 / / / /
6(2) =~ [ Gla,a)S@aV + [ [G(a,a)Vé(a') - 6(a)VG(a, )] -dS
We choose the Green's funciton G(z,z’) without the boundary,

OAG(:U, ') = —4né(|x — 2|,

and expand in the multipoles, Legendre expansion,

G(z,z) =

de(r ') Z €m 7 (E-I- )I P,™(cos ) P,"(cos ') cosm(p — ¢').

|:v—

rt

gf(r’na ’l"/) — T<17 r> L= SUD{T’, rl}a r< L= inf{’l", T/}
rs
* An iteration method is used to compute a converged solution.

fb(N_H) = Mﬁ(INT) + (1 — A)gb(m, A : parameter 0.3 ~ 0.5.



() Simplistic iteration algorithm.

Initialise : {¢, o, B hyp, p, P; 2, C, Rp}

ex) a solution from a previous computation,
or two TOV solutions in PN orbit (BNS).

l

Compute source terms : S.

l

o —1
Substitute in a Poisson solver : ¢(INT) = A 3.

l

Update all quantities :
pUNTH = 2N 4 (1 — X)),



Check the convergence
2|¢(N+1) _ ¢(N)|
NFD)| 4 [

error =

<1072~ 107°,

Not converged — go back to the second step.
Converged — Compute quantities, M, J and so on

This numerical code may be considered as a family of a scheme
developed by Ostriker and Marck (1968) for Newtonian rotating star.
It has been successfully extended for the GR rotating neutron star
computation by Komatsu, Eriguchi, and Hachisu (1989), known as
KEH code.



Related theorems :
A first law relation and a equality Mappm = Mk




(O First law of thermodynamics for binary systems.
(Friedman, Uryu and Shibata, PRD 2002)

o The first law compares two nearby equilibria having a helical K.V..

Given a family of perfect fluid spacetime,

QM) = [gag(N), u*(N), p(N), s(V)] ,

one defines the Eulerian variation of each quantities by

5RO = = QMWlr=o

Lagrangian displacement £¢: Let W, be a diffeo mapping each tra-
jectory of initial fluid to a corresponding worldline of the configuration
Q(N\). The tangent £&¢P To the path A — W, (P) can be regarded as
a vector joining the fluid element at P in one configuration to a fluid
element in a nearby oncfiguration.

AQQ) 1= W ,QM)|a=0 = (54 £6)Q



We choose gauge to make k¢ independent of .

A Noether charge Q associated with k¢ is found from the action of the
perfect fluid spacetime, (Wald-lyer, Sorkin, Brown).

L= (16%}%—6) vV—g.

1 . 1 af of3 a 3
—\/__9(511 = ~Ten <G — 8T )5ga5 — "V gTha
h t
— pTAs — ” _gA(pu vV—g) + VO

1
O = (e +p)¢*Pes + m—ﬂ(g‘”gﬁ O — g*P g1V 36g.s.



Definition A Noether charge () associated with k% is given by,
Q= § Q*dS,g,

QP = _8iv%5 + k*BP — kP B,
T

1
(QK =—— 75 Vek dSas, QL= ]f (k*B” — kﬁB%dSag,)
87'(' S S

where B% is any family of vector fields that satisfies

1
——=6(B%/—g) = ©°,
vV —4g
We make @ finite by choosing, outside the matter,
/_g @)
vV—gB® = m—ﬂ(gmgm — 99" x=0 V3 g,5(N).

Now, one can generalize the Bardeen-Carter-Hawking calculation to
fluid with arbitrary flow.



Using Stokes theorem, Qg is written,
1
Qr—) Qki= — /Z£d3a:—|— /Z(e+p)u%,ﬁvﬁdsa—8—7T /Z(G%—sz%)kﬁdsa.
i

1

1
= —— ¢ VU%IdS, 3 = —r;A,
QKi S 72,2 af 87‘('/% 1

then calculate Q.

1
( Two identities are used,  V3V%%’ = R% kP = SRE + Gag kP,
and 0 =¢cknq+ (e + p)uo‘umjﬁna + To‘gkﬁna. )

For 5QL,

5(Qr—S" Q) = faz(kaeﬁ—kﬁea)dsaﬁ — /Z vﬁeﬁkadsa—/z £,0%S,,
7

1
5Q; = jég_(k@eﬁ — k9O dS, = ——dmiA.



Writing

T'—T _ . u_ h-—-Ts
Tt S utmg ~ ut
and
dMg = pu®dSqy, dS := sdMg, dCqy := huqadMpg,
we have

_ 1
5Q = /Z [TAdS + GAdMg + v AdCa] + =3 ridA;
v .
1

Conservation of entropy, rest mass, and circulation of each fluid ele-
ment imply

1
5Q = S—W;mimi.



In the post-Newtonian approximation and the related spatially confor-
mally flat spacetimes (IWM formalism) that describe the binary neutron
star systems, the metric is non-radiateive and asymptotically flat.

1

5Q = 6M — Q6J

For a change that locally preserves vorticity, baryon number and en-
tropy,

OM = Q0J



Remarkl @ is independent of the 2-surface S on which it is evaluated.
This is immediate for Q) by definition. For @, it follows from Q = Qg
at A = 0 and éQ is independent of S as shown above (Q(\) = Q(0) +

50Q).

Remark2  The difference 6(Q — X;Q;) (Q; is black hole terms) is
invariant under gauge transformations that respect the symmetry k.




(O Turning point stability and location of the ISCO.

The first law allows one to apply a turning point theorem (Sorkin 1981)
to sequence of binary equilibria. The theorem shows that on one side
of a turning point in M at fixed J or in J and fixed baryon mass Mg,
the sequence is unstable.

Theorem (Sorkin, 1981), We assume that unique 2 such that éM = Q5J, exist for
any equilibriums, and that the equilibria are extrema of mass with J constant.

Consider a one-parameter family of binary equilibrium models
QA(A) = [gap(X), u(N), p(N), s(N)],

along which the Lagrangian changes As, AdMp, and AdC, vanish. Suppose that
J = 0 at a point \g along the sequence, and that €2J % 0 at A\o. Then the part of

the sequence for which $2J > 0 is unstable for \ near \o.



(O Solution sequence of BNS and determination of the ISCO.
(Lai, Rasio, Shapiro 1993; Baumgarte, Cook, Scheel, Shapiro, Teukolsky 1998)

A A

A stability of solution I M I M /
changes at a turning N

point of a sequence.

sec
1 1 0.5 0. 0.5 1.1.
0.5 0.5
. Y o. 0.
Density contour at dp
-0.5 -0.5




O Mk—Mapn relation.
(Shibata, Uryu and Friedman, PRD 2004)

We have derived sufficient fall off behaviours of the metric and extrin-
sic curvature in the asymptotics to satisfy an equality M = Mapm.
improved results by Ashtekar and Magnon-Ashtekar, and by Beig so
that we can apply the equality to the binary systems.

Beig's proof is restricted to spacetimes without black holes. Our proof
relys only on the asymptotic behaviour of fields, and hence admit black
holes.

From the equality Mk = Mapwnm, One can derive the general relativistic
virial relation, an integral

/xiwnyTlqu?’az =0

These relations are useful for calibrate equilibirum solutions.



