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This note :

Mathematical modeling of the quasiequilibrium solution for the rotating

compact star, BNS, BH-NS and so on that may be used as the initial

data.

Astrophysical spects is not included in this note.

• A review.

• Formulations of the problem.

• A numerical method.



Review : (quasi)equilibrium solutions



• A classifying catalogue for (quasi)equilibrium solutions.
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Ellipsoidal figures
· · · (exact solution, virial method, variational method)

Perturbative expansion · · · · · · · · · · · · · · · (semi-)analytic
Hydrostatic (stationary) equilibrium · · · numerical

EOS for fluid











Incompressible fluid · · · ρ = const.

Polytropic EOS · · · · · · p = κρ1+1/n

nuclear EOS · · · · · · · · · tabulated or fitting formula

Flow field



















Co-rotation (synchronous rotation)
Irrotation (counter rotation)
Arbitrary spin
Differential rotation

Gravity







































Newtonian
Post-Newtonian
IWM formalism
Stationary, axi-symmetric
Waveless formalism
Helical symmetry

Components



















A single star
Equal mass
Unequal mass
BH-NS



3+1 decomposition and

York-Lichnerowicz conformal decomposition.



(M, gαβ), globally hyperboric spacetimes that have a timelike tα.

Σ = Σ0: a Cauchy surface transverse to tα.

γab(t): the spatial metric on Σt.

nα: the future-pointing unit normal to this foliation.

Spacetime tensors that are orthogonal on all of their indices to nα are

identified with spatial tensors on Σt. In particular the projection of

γαβ = γab + nαnβ orthogonal to nα is associated with γab(t).

Since tα is transverse to Σ, one can introduce non-vanisheng lapse α

and a shift βα, as tα = αnα + βα, where βαnα = 0 a vector on Σ.

In a chart {t, xi}, for which Σ is a t = constant surface, the metric is

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt).

gαβ is 4D metric of M, γab is 3D spatial metric of Σ.



◦ A summary of notations.

t : parametrize foliation Σt.

tα : a generator of a map χt : Σt0 → Σt, normalized as tα∇αt = 1.

nα : the future-pointing unit normal to the foliation. nα = −α∇αt.

α : a lapse. βα : a shift. tα relates to nα by tα = αnα + βα, βαnα = 0.

γab : a spatial metric on Σt. (The projection tensor γαβ = gαβ+nαnβ.)

Kab : the extrinsic curvature of Σt given by Kab = −1
2£nγab

Aab: a trace free part of Kab, K: a trace of Kab, Aab := Kab− 1
3γabK.

γ̃ab : the conformal metric defined by γab = ψ4γ̃ab.

Ãab : a conformal weighted Aab, Aab := ψ4Ãab, also Kab := ψ4K̃ab.

fab : the flat metric hab = γ̃ab − fab :

Da, D̃a,
◦
Da : the covariant derivatives associated with γab, γ̃ab and fab.



© Formulation.

◦ The field equation Gαβ = 8πTαβ is projected to Σ and its normal nα.

Hamiltonian constraint : (Gαβ − 8πTαβ)n
αnβ = 0,

Momentum constraint : (Gαβ − 8πTαβ)γ
α
anβ = 0.

Trace of a projection to Σ : (Gαβ − 8πTαβ)(γ
αβ + nαnβ) = 0.

Tr free part of a projection to Σ : (Gαβ−8πTαβ)(γ
α
aγβb−1

3γabγ
αβ) = 0.

Solved for the metric {ψ, βa, α, γ̃ab} on a slice Σ, in a chart {t, xi},
ds2 = −α2dt2 + ψ4γ̃ij(dx

i + βidt)(dxj + βjdt).

◦ Gauge conditions:

(1) a temporal gauge (slicing condition, e.g. the maximal slice K = 0).

(2) three spatial gauge (e.g. the Dirac gauge
◦
Daγ̃ab = 0).

◦ A condition to specify the conformal decomposition:

det(γ̃ab) = det(fab), (fab: a flat metric. )

( γ̃ab := ψ−4γab: the confomally rescaled spatial metric.)



◦ Evolution equations.

In 3+1 formulation used in numerical relativity, {γ̃ab, ψ, Ãab, K} are con-

sidered as “dynamical” variables. (cf. {γab, πab} in ADM.)

◦ From the definition, Kab = −1
2£nγab, with γ̃ = f .

Trace part : (∂ t − £β) lnψ6 = −αK,
Trace free part : (∂ t − £β)γ̃ab = −2αÃab.

◦ Spatial components of the Einstein equation.

(Gαβ − 8πTαβ)(γ
αβ + nαnβ) = 0 :

(∂ t − £β)K = α(ÃabÃ
ab − 1

3
K2) −DaD

aα− 4πα(ρH + S),

(Gαβ − 8πTαβ)(γ
α
aγ
β
b −

1

3
γabγ

αβ) = 0 :

(∂t − £β)Ãab = α(KÃab − 2ÃacÃ
c
b ) + ψ−4[αRab −DaDbα− 8παSab ]

TF

Note: some of £β are operating to tensor densities with different weights.



Separate out a flat Laplacian for hij from Rij.

Split Rab as Rab = 3R̃ab+
3R̃

ψ
ab.

3R̃ab : Ricci tensor associated with γ̃ab.

3R̃ψab = −2

ψ
D̃aD̃bψ − γ̃ab

2

ψ
D̃cD̃cψ +

6

ψ2
D̃aψD̃bψ − γ̃ab

2

ψ2
D̃cψD̃

cψ .

3R̃ab = −1

2

◦
∆hab −

1

2
[
◦
Db(γ̃acF

c) +
◦
Da(γ̃bcF

c)]+R̃NL
ab .

F a ≡
◦
Dbγ̃

ab =
◦
Dbh

ab,
◦
∆ = fab

◦
Da

◦
Db, γ̃ab = fab+hab, γ̃ab = fab+hab.

RNL
ab = −1

2
(
◦
Dbh

cd ◦Dchad +
◦
Dah

cd ◦Dchbd + hcd
◦
Dc

◦
Ddhab) −

◦
DaC

c
cb

+CcabC
d
dc−CdacCcbd −

1

2
[
◦
Db(hacF

c) +
◦
Da(hbcF

c) ] + F cCc,ab

Ccab ≡
γ̃cd

2
(
◦
Dahdb +

◦
Dbhad −

◦
Ddhab) and Cc,ab ≡ γ̃cdC

d
ab.

Dirac gauge F a = 0, det γ̃ab = det fab, Cbba = 0



◦ Role of the Bianchi identity in 3+1 formulation.

In 3+1 formulation, the (contracted) Bianchi identity, ∇βG
β
α = 0,

implies that the constraints are automatically satisfied in D(S) the
domain of dependence of S ∈ Σ if the constraints are satisfied on
S initially, and the fields are evolved solving the spatial part of the
Einstein equations in D(S).

This can be seen as follows: As a consequence of the Bianchi identity,
we have ∇βEβα = 0, where Eαβ := Gαβ − 8πTαβ = 0.

C := (Gαβ − 8πTαβ)n
αnβ (Hamiltonian constraint: H = − 1

2
√
γC.)

Ca := (Gαβ − 8πTαβ)γa
αnβ (Momentum constraint: Ca = − 1

2
√
γCa.)

Eab := (Gαβ − 8πTαβ)γa
αγb

β

Projections of ∇βEβα = 0 to nα and the hypersurface Σ become

nα∇βEβα = −£nC +KC + 1
α2Da(α

2Ca) +KabEab = 0,

γaα∇βEβα = −£nCa +KCa + CDa lnα+ 1
αDb(αE

b
a) = 0,

Hence, C = 0 and Ca = 0 on S ∈ Σ and Eab = 0 in D(S), then ∂tC = 0
and ∂tCa = 0, meaning that constraints are always satisfied in D(S).



◦ 3+1 decomposition of the steress-energy tensor.

The decomposition of the stress energy tensor Tαβ are defined by

ρH := Tαβn
αnβ, ja := −Tαβγaαnβ,

Sab := Tαβγa
αγb

β, S := Tαβγ
αβ = Sabγ

ab.

ex) A perfect fluid stress-energy tensor

Tαβ = (ε+ p)uαuβ + pgαβ,

where uα: 4 velocity, p: fluid’s pressure, ε: energy density.

Writing uα = ut(tα + vα) with a spatial velocity vαnα = 0, we have

uαnα = −αut, uαγαa = ut(βa + va).

ρH := hρ(αut)2 − p,

ja := hρα(ut)2(βa + va),

Sab := hρ(ut)2(βa + va)(βb + vb) + pγab,

S := hρ[(αut)2 − 1] + 3p.



Initial data on a conformal flat slice



Initial data construction

Data on the initial slice has to satisfy constraints (Gαβ−8πTαβ)n
α = 0.

For the most of black hole initial data, only these four constraint

equations are solved.

© Isenberg-Wilson-Mathews (IWM) formulation.

• 4 constraints and the spatial trace of Einstein equations are solved

for spatially conformally flat metric on a maximally embedded slice Σ,

ds2 = −α2dt2 + ψ4fij(dx
i + βidt)(dxj + βjdt),

fij: flat metric.

(5 components of the metric coefficients are solved. Stationary con-

dition in rotating frame is assumed for the fluid equations of motion.)

• IWM formulation agrees with GR in a static and spherically symmetric

spacetime, and with the first post-Newtonian approximation.



© Initial data in IWM formulation.

• For the metric, ds2 = −α2dt2 + ψ4fij(dx
i + βidt)(dxj + βjdt), four

constraints and the spatial trace of the Einstein equation are solved.

(Gαβ − 8πTαβ)n
αnβ = 0 :

◦
∆ψ +

ψ5

8

(

AabA
ab +

2

3
K2

)

+ 2πψ5ρH = 0,

(Gαβ − 8πTαβ)γa
αnβ = 0 :

◦
∆β̃a +

1

3

◦
Da

◦
Dbβ̃

b + 2αAa
b ◦Db ln

ψ6

α
− 4

3
α
◦
DaK − 16παja = 0,

(Gαβ − 8πTαβ)(γ
αβ + 1

2n
αnβ) = 0 :

◦
∆(αψ) + ψ5

£t−βK − αψ5
(

7

8
AabA

ab +
5

12
K2

)

− 2παψ5(ρH + 2S) = 0.

• We choose K = 0 = ∂tK (maximal slicing). Because the spatial
metric is conformally flat, Aab does not involve a time derivative of the

spatial metric. Aab = ψ4

2α

(

£βfab − 1
3fabf

cd£βfcd
)

.



© An equation set for a coding.

◦
∆ψ = −ψ

5

8
ÃabÃ

ab − 2πψ5ρH

◦
∆β̃a +

1

3

◦
Da

◦
Dbβ̃

b = −2αÃa
b ◦Db ln

ψ6

α
+ 16παja

◦
∆(αψ) = αψ57

8
ÃabÃ

ab + 2παψ5(ρH + 2S)

Ãab =
1

2α

(

£βfab −
1

3
fabf

cd
£βfcd

)

=
1

2α

( ◦
Daβ̃b +

◦
Dbβ̃a −

2

3
fab

◦
Dcβ̃

c
)

Indexes of conformal weighted quantities (quantities with tilde) are

raise and lowered using the conformal metric γ̃ab.

γ̃ab = fab for spatially conformal flat initial data.

β̃a := βa, β̃a := γ̃abβ̃
b = ψ−4γabβ

b = ψ−4βa,

Ãab := Aab, Ãab := γ̃bcAa
c, Ãab := γ̃acAcb,

(ÃabÃ
ab = ÃabÃb

a = AabAb
a = AabA

ab).



© Shibata decomposition for the momentum constraint.

Often, the vector elliptic operator in the Momentum constraint

is decomposed to improve the accuracy.

For
◦
∆β̃a +

1

3

◦
Da

◦
Dbβ̃

b = Sa, introduce β̃a = Ba +
1

8

◦
Da(B − xbBb) where

xa are corrdinates that satisfy
◦
Daxb = fab.

Substituting the decomposition to the momentum constraint, we have

◦
∆β̃a +

1

3

◦
Da

◦
Dbβ̃

b =
◦
∆Ba +

1

6

◦
Da(

◦
∆B − xb

◦
∆Bb) = Sa.

So, we solve elliptic equations
◦
∆Ba = Sa and

◦
∆B−xb

◦
∆Bb = 0 separatly.

Substituting the formar to the latter we have,

◦
∆Ba = Sa := −2αÃa

b ◦Db ln
ψ6

α
+ 16παja,

◦
∆B = xaSa.



Stationary condition for the fluid.



© Formulation for the fluid.

A perfect fluid is described by its 4 velocity uα and stress-energy tensor

Tαβ = (ε+ p)uαuβ + pgαβ,

where p is the fluid’s pressure, ε its energy density.

As a consequence of the Bianchi identity, we have ∇βTα
β = 0.

A projection of the identity ∇βTα
β = 0 transverse to uα with the

projection tensor qαβ = gαβ + uαuβ, and its projection to uα, give the

relativistic Euler equation, and the mass energy conservation law.

Writing the identity ∇βTα
β = 0,

∇βTα
β = (ε+ p)(uβ∇βuα + uα∇βu

β) + qα
β∇βp+ uαu

β∇βε = 0,

these projections are derived

qαγ∇βTγ
β = 0 :

qαγ[ (ε+ p)uβ∇βuγ +∇γp ] = 0 ⇔ qα
β[£uuβ +

1

ε+ p
∇βp ] = 0

uα∇βTα
β = 0 : uα∇αε+(ε+ p)∇αuα = 0 ⇔ £uε+ (ε+ p)£u

√−g = 0



When the fluid is close to an equilibrium, one can derive a simpler set

of equations. Introducing the baryon mass density ρ, and the specific

enthalpy defined by h :=
ε+ p

ρ
, the identity ∇βTα

β = 0 can be written

∇βTα
β = ρ[uβ∇β(huα) + ∇αp ] + huα∇β(ρu

β)

= ρ[uβ∇β(huα) + ∇αh ] + huα∇β(ρu
β) − ρ

(

∇αh− 1

ρ
∇αp

)

= ρ[uβ∇β(huα) + ∇αh ] + huα∇β(ρu
β) − ρT∇αs,

where s is the specific entropy. In the last line, the local 1st law of

thermodynamics dh = Tds +
1

ρ
dp is used; the last line is correct only

for the reversible process. (This should be exact for the perfect fluid

that has no entropy production).

Note that a projection uα[uβ∇β(huα) + ∇αh ] = 0 is trivial. Therefore,

independent components of the equation uβ∇β(huα)+∇αh = 0 (which

relates to the relativistic Euler eq.) are 3, not 4.



We assume that the baryon mass is conserved, ∇α(ρuα) = 0. Then,

in the local thermodynamic equilibrium, a projection of ∇βTα
β = 0 to

the 4 velocity uα gives uα∇αs = £us = 0.

Under these assumptions, the equations for the relativistic fluid become

uβ∇β(huα)+∇αh = 0 ⇔ £u(huα)+∇αh = 0

(

h :=
ε+ p

ρ

)

∇β(ρu
β) = 0 ⇔ £u(ρ

√−g) = 0

∇αs = 0 ⇔ £us = 0

With an appropariate choice for EOS, a set of fluid equations is closed.

If the isentropic flow, s = const everywhere in the fluid, is assumed,

one can introduce the one-parameter EOS.



© Statinonary condition for the fluid.

? We assume stationary state in the rotating frame for the fluid source.

Impose a symmetry along kα = tα+Ωφα (Equilibrium assumption),

with the Ω = constant.

£k(ρu
t√−g) = 0, γa

α
£k(huα) = 0, or £k(ja

√
γ) = 0.

Intriducing the spatial velocity vα, the 4 velocity is written

uα = ut(kα + vα), vαnα = 0.

• Recall:

tα = αnα + βα,

kα = αnα + ωα = αnα + βα + Ωφα,

ωα = βα + Ωφα, the shift in a rotating frame.



◦ For corotational flow, uα = utkα, vα = 0, the rest mass conservation

becomes trivial, and the relativistic Euler eq. has the first integral

h

ut
= const.

From the normalization of the four velocity uαuα = −1,

ut =
1

√

α2 − ωaωa
=

1
√

α2 − ψ4fab ω̃
aω̃b

,

where ω̃a = β̃a + Ωφa.

cf) uαuα = (ut)2gαβk
αkβ = (ut)2gαβ(αn

α + ωα)(αnβ + ωβ) = (ut)2gαβ(−α2 + ωαωα)

(Exc. Consider how to formulate the differential rotation.)



◦ Source terms in the field equaitons for corotational flow.

Decomposition of the 4 velocity for the corotational flow uα = utkα is

uαnα = −αut

uαγαa = utωα

ρH := Tαβn
αnβ = hρ(αut)2 − p,

ja := −Tαβγaαnβ = hρα(ut)2ωa= hρα(ut)2ψ4ω̃a,

Sab := Tαβγa
αγb

β = hρ(ut)2ωaωb + γab p = hρ(ut)2ψ8ωaωb + ψ4γ̃ab p,

S := Tαβγ
αβ = hρ[(αut)2 − 1] + 3 p.

where ω̃a := γ̃ab(β̃
b + Ωφ̃b) = β̃a + Ωφ̃a



◦ For irrotational flow, huα = ∇αΦ,

Da

[

αρ

h

(

DaΦ − hutωa
)

]

= 0,

vaDaΦ +
h

ut
= C = const,

where uα = ut(kα + vα), vαnα = 0, ωα = βα + Ωφα.

For polytrope p = κρ1+1/n, h = 1 + (n+ 1)
p

ρ
.

(ut is solved from uαuα = −1.)

? Velocity potential Φ is solved from the elliptic equation with

the Neumann boundary condition.

vaDah = 0, along the surface of NS.

(the boundary condition is equivalent withuα∇αh = 0 with £kh = 0 .)



Solving method for binary neutron stars :

A numerical method.



© Simplistic chart for developing a numerical code.

Writing down all equations used in a numerical computation.

(Also important to look for the normalization of variables and the

choice of parameters suitable for the numerical computation.)

↓

Designing a numerical method

(e.g. the initial data code for the netron star:

Choice of coordinates, an elliptic solver,

and an iteration method, etc.)

↓

Typing... perhaps about 3000− 20000 lines by FORTRAN 77.



© Normalization of the variables and a choice of parameters

— important for making a successful iteration scheme.

We have two parameters : {Ω, C}. It is convenient to determine them

by fixing two quantities; the separation and the central density.

one can additionally introduce a length scale R0 for normalization.

we take 2R0 to be the diameter of a NS. r̂ := r/R0.

For a polytropic EOS, one can rescale (measure) the length scale by

a constant κ (p = κρ1+1/n) as R̄0 := κ−n/2R0.

Then all components of field equations are written as follows;

for the fields φ (= {ψ, α, βa, hab}).
◦
∆φ = Sg[φ] + R̄2

0 Sm[φ, ρ,Φ],

where all quantities are normalized by R0.

Fluid variable {ρ,Φ}; Parameters {Ω, C, R̄0}.



© Choice of coordinates and elliptic solver.

To solve the elliptic equations for the gravitational fields,

(1) any type of Poisson solver would work fine,

(2) coordinate choice may depend on a type of Poisson solver.

Our choice:

We choose spherical coordinates (rg, θg, φg) whose origin is the center

of orbital motion, and (rf , θf , φf) whose origin is the center of each

neutron star.

Then, we use Green’s formula to invert the Laplacian.



© Coordinates and region for numerical computation.

r

r
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R
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Poisson solver : applying Green’s formula.

? An elliptic PDE,
◦
∆φ = S(x),

is written in the integral form, the Green’s formula,

φ(x) = − 1

4π

∫

V
G(x, x′)S(x′)dV +

1

4π

∫

∂V

[

G(x, x′)∇φ(x′) − φ(x′)∇G(x, x′)
]

·dS

We choose the Green’s funciton G(x, x′) without the boundary,

◦
∆G(x, x′) = −4πδ(|x − x′|),

and expand in the multipoles, Legendre expansion,

G(x, x′) =
1

|x− x′| =

∞
∑

`=0

g`(r, r
′)
∑̀

m=0

εm
(`−m)!

(`+m)!
P m
` (cos θ)P m

` (cos θ′) cosm(ϕ− ϕ′).

g`(r, r
′) =

r`<

r`+1
>

, r> := sup{r, r′}, r< := inf{r, r′}

? An iteration method is used to compute a converged solution.

φ(N+1) = λφ(INT) + (1 − λ)φ(N), λ : parameter 0.3 ∼ 0.5.



© Simplistic iteration algorithm.

Initialise : {ψ, α, βa, hab, ρ,Φ;Ω, C,R0}
ex) a solution from a previous computation,

or two TOV solutions in PN orbit (BNS).

↓

Compute source terms : S.

↓

Substitute in a Poisson solver : φ(INT) =
◦
∆

−1
S.

↓

Update all quantities :

φ(N+1) = λφ(INT) + (1 − λ)φ(N),



↓

Check the convergence :

error =
2|φ(N+1) − φ(N)|
|φ(N+1)| + |φ(N)|

< 10−5 ∼ 10−6,

↓

Not converged – go back to the second step.

Converged – Compute quantities, M, J and so on

This numerical code may be considered as a family of a scheme

developed by Ostriker and Marck (1968) for Newtonian rotating star.

It has been successfully extended for the GR rotating neutron star

computation by Komatsu, Eriguchi, and Hachisu (1989), known as

KEH code.



Related theorems :

A first law relation and a equality MADM = MK



© First law of thermodynamics for binary systems.

(Friedman, Uryu and Shibata, PRD 2002)

◦ The first law compares two nearby equilibria having a helical K.V..

Given a family of perfect fluid spacetime,

Q(λ) :=
[

gαβ(λ), u
α(λ), ρ(λ), s(λ)

]

,

one defines the Eulerian variation of each quantities by

δQ(λ) :=
d

dλ
Q(λ)|λ=0

Lagrangian displacement ξα: Let Ψλ be a diffeo mapping each tra-

jectory of initial fluid to a corresponding worldline of the configuration

Q(λ). The tangent ξαP To the path λ → Ψλ(P) can be regarded as

a vector joining the fluid element at P in one configuration to a fluid

element in a nearby oncfiguration.

∆Q(λ) :=
d

dλ
Ψ−λQ(λ)|λ=0 = ( δ + £ξ )Q

.



We choose gauge to make kα independent of λ.

A Noether charge Q associated with kα is found from the action of the

perfect fluid spacetime, (Wald-Iyer, Sorkin, Brown).

L =

(

1

16π
R− ε

)√
−g.

1
√−g

δL = − 1

16π

(

Gαβ − 8πTαβ
)

δgαβ − ξα∇βTα
β

− ρT∆s − h

ut
√−g

∆(ρut
√
−g) + ∇αΘ

α

Θα = (ε+ p)qαβξβ +
1

16π
(gαγgβδ − gαβgγδ)∇βδgγδ.



Definition A Noether charge Q associated with kα is given by,

Q =
∮

S
QαβdSαβ,

Qαβ = − 1

8π
∇αkβ + kαBβ − kβBα,

(

QK = − 1

8π

∮

S

∇αkβdSαβ, QL =

∮

S

(kαBβ − kβBα)dSαβ,

)

where Bα is any family of vector fields that satisfies

1√−gδ(B
α√−g) = Θα,

We make Q finite by choosing, outside the matter,

√
−gBα =

√−g
16π

(gαγgβδ − gαβgγδ)|λ=0

◦
∇β gγδ(λ).

Now, one can generalize the Bardeen-Carter-Hawking calculation to

fluid with arbitrary flow.



Using Stokes theorem, QK is written,

QK−
∑

i

QKi = −
∫

Σ
L d3x+

∫

Σ
(ε+p)uαuβv

βdSα−
1

8π

∫

Σ
(Gαβ−8πTαβ)k

βdSα.

QKi = − 1

8π

∮

Bi
∇αkβdSαβ =

1

8π
κiAi,

then calculate δQK.

( Two identities are used, ∇β∇αkβ = Rαβ k
β =

1

2
Rkα +Gαβ k

β,

and 0 = ε kαnα + (ε+ p)uαuβv
βnα + T αβk

βnα. )

For δQL,

δ(QL−
∑

i

QLi) =
∮

∂Σ
(kαΘβ−kβΘα)dSαβ =

∫

Σ
∇βΘ

βkαdSα−
∫

Σ
£kΘ

αdSα,

δQLi =
∮

Bi
(kαΘβ − kβΘα)dSαβ = − 1

8π
δκiAi.



Writing

T̄ :=
T

ut
, µ̄ :=

µ

utmB
=
h− Ts

ut
,

and

dMB := ρuαdSα, dS := sdMB, dCα := huαdMB,

we have

δQ =
∫

Σ

[

T̄∆dS + µ̄∆dMB + vα∆dCα
]

+
1

8π

∑

i

κiδAi.

Conservation of entropy, rest mass, and circulation of each fluid ele-

ment imply

δQ =
1

8π

∑

i

κiδAi.



In the post-Newtonian approximation and the related spatially confor-

mally flat spacetimes (IWM formalism) that describe the binary neutron

star systems, the metric is non-radiateive and asymptotically flat.

QK =
1

2
M − ΩJ

δQ = δM − ΩδJ

For a change that locally preserves vorticity, baryon number and en-

tropy,

δM = ΩδJ



Remark1 Q is independent of the 2-surface S on which it is evaluated.

This is immediate for QK by definition. For Q, it follows from Q = QK
at λ = 0 and δQ is independent of S as shown above (Q(λ) = Q(0) +

δQ).

Remark2 The difference δ(Q − ΣiQi) (Qi is black hole terms) is

invariant under gauge transformations that respect the symmetry kα.



© Turning point stability and location of the ISCO.

The first law allows one to apply a turning point theorem (Sorkin 1981)

to sequence of binary equilibria. The theorem shows that on one side

of a turning point in M at fixed J or in J and fixed baryon mass M0,

the sequence is unstable.

Theorem (Sorkin, 1981), We assume that unique Ω such that δM = ΩδJ, exist for
any equilibriums, and that the equilibria are extrema of mass with J constant.

Consider a one-parameter family of binary equilibrium models

Q(λ) := [gαβ(λ), u
α(λ), ρ(λ), s(λ)],

along which the Lagrangian changes ∆s,∆dMB, and ∆dCα vanish. Suppose that

J̇ = 0 at a point λ0 along the sequence, and that Ω̇J̈ 6= 0 at λ0. Then the part of

the sequence for which Ω̇J̇ > 0 is unstable for λ near λ0.



© Solution sequence of BNS and determination of the ISCO.
(Lai, Rasio, Shapiro 1993; Baumgarte, Cook, Scheel, Shapiro, Teukolsky 1998)

A stability of solution

changes at a turning

point of a sequence.

J, MJ, MJ, M

d dynRd dddR
sec

Density contour at dR
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© MK–MADM relation.

(Shibata, Uryu and Friedman, PRD 2004)

We have derived sufficient fall off behaviours of the metric and extrin-

sic curvature in the asymptotics to satisfy an equality MK = MADM,

improved results by Ashtekar and Magnon-Ashtekar, and by Beig so

that we can apply the equality to the binary systems.

Beig’s proof is restricted to spacetimes without black holes. Our proof

relys only on the asymptotic behaviour of fields, and hence admit black

holes.

From the equality MK = MADM, one can derive the general relativistic

virial relation, an integral
∫

xiγ
µ
i ∇νTµ

νd3x = 0

These relations are useful for calibrate equilibirum solutions.


