Short introduction for the quasi-equilibrium binary neutron star solutions.

- Introducing two patches of fluid coordinate grids, the initial data code can be extended for the binary neutron star code.
- Such initial data is also called as the (quasi-)equilibrium circular solution of the binary neutron stars.
- A sequence of equilibrium solutions with constant baryon mass, constant entropy, and constant circulation for zero viscosity case (or a corotational flow for the strong viscosity case) models an inspiral of binary neutron stars.
- A condition for the constant entropy implies the one-parameter EOS, and that for the constant circulation a restriction to the flow field that is included in the hydrostationary equation by construction. Then we left with computations for a set of solutions that has the same rest mass for each NS.
- For the inspiraling binary neutron stars, the flow field is expected to become irrotational. If the neutron star matter has a very strong viscosity, the flow field may become corotational, but this is considered to be unlikely.

Constant rest mass sequence for unequal mass binary neutron stars.

- We write the rest mass and the central density of each NS component as (M_1, ρ_1) , and (M_2, ρ_2) .
- To compute a solution that models the inspiral, we need to adjust three parameters, the rest mass M_1 and the ratio of the rest mass $q = M_2/M_1$ to be desirable values, and y-component of the linear momentum P_y to be zero, by adjusting the central densities ρ_1 and ρ_2 , and the center of circular orbit.

$$P_{y} := -\frac{1}{8\pi} \int_{\infty} \pi^{a}{}_{b} \hat{y}^{b} dS_{a} = \frac{1}{8\pi} \int_{\infty} K^{a}{}_{y} dS_{a}$$

$$P_{y} = \frac{1}{8\pi} \int_{\Sigma} 8\pi j_{y} \psi^{6} \sqrt{f} d^{3}x$$

$$M_{2}$$

$$A = \text{separation}$$

$$M_{1}$$

• For the adjustment of these parameters to desirable values, the discrete Newton-Raphson method appears to be useful.

Recall: Newton-Raphson method; Find a solution for F(x) = 0, where F and x may be the vector valued, and each component of F(x) may be nonlinear.

Suppose $x^{(n)}$ is an approximation of a true solution, and $x^{(n)} + \delta x$ is exact, $F(x^{(n)} + \delta x) = 0$. Expanding this to the first order, we have

 $F(x^{(n)} + \delta x) \approx F(x^{(n)}) + \partial F(x^{(n)}) / \partial x \, \delta x \approx 0.$

Therefore we perform the following iteration;

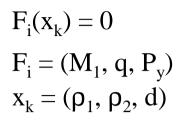
$$\delta \mathbf{x}^{(n)} \begin{cases} \delta \mathbf{x}^{(n)} := [\partial F(\mathbf{x}^{(n)})/\partial \mathbf{x}]^{-1} \bullet [-F(\mathbf{x}^{(n)})] & \quad \text{If the form of the inverse} \\ \text{of the Jacobian is known.} \\ \mathbf{Or}, \partial F(\mathbf{x}^{(n)})/\partial \mathbf{x} \bullet \delta \mathbf{x}^{(n)} = -F(\mathbf{x}^{(n)}) & \quad \mathbf{Or solve this linear eq.} \end{cases}$$

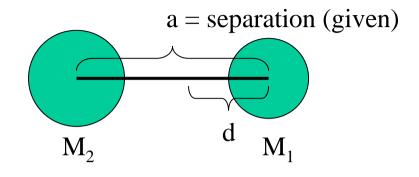
Update: $x^{(n+1)} = x^{(n)} + \delta x^{(n)}$

The method is called Newton-Raphson if the Jacobian $\partial F(x^{(n)})/\partial x$ is computed analytically, while it is called secant method if the Jacobian $\partial F(x^{(n)})/\partial x$ is computed by the finite difference formula.

If the form of the function F is not given explicitly at all, we use the Discrete Newton-Raphson method described in the next page.

Discrete Newton-Raphson method





For finding desirable values for (M_1, q, P_y) , we adjust (ρ_1, ρ_2, d) . However, explicit forms of (M_1, q, P_y) in terms of (ρ_1, ρ_2, d) are not given.

Discrete Newton-Raphson method uses the Jacobian calculated in the following manner:

For n functions F_i , i = 1, ..., n and n parameters x_k , k = 1, ..., n, compute $F_i(x_k^{(n)})$, and $F_i(x_k^{(n)} + \varepsilon_j \, \delta_k^{j})$ for j = 1, ..., n, where δ_k^{j} is a Kronecker delta, and ε is a small value ($\varepsilon_j \sim 10^{-8} x_j^{(n)}$ is recommended in a book. I'm using $10^{-4} x_j^{(n)}$). Then, the Jacobian is calculated from

$$\frac{\partial F_i(x)}{\partial x_j^{(n)}} = \frac{F_i(x_k^{(n)} + \varepsilon_j \delta_k^j) - F_i(x_k^{(n)})}{\varepsilon_j}$$

Therefore one needs n+1 converged solution to compute a Jacobian.