
Short introduction for the quasi-equilibrium binary neutron star solutions.

• Introducing two patches of fluid coordinate grids, the initial data code 
can be extended for the binary neutron star code. 

• A sequence of equilibrium solutions with constant baryon mass, constant 
entropy, and constant circulation for zero viscosity case (or a corotational 
flow for the strong viscosity case) models an inspiral of binary neutron stars.  

• Such initial data is also called as the (quasi-)equilibrium circular solution 
of the binary neutron stars.

• A condition for the constant entropy implies the one-parameter EOS, and 
that for the constant circulation a restriction to the flow field that is included  
in thehydrostationary equation by construction.  Then we left with 
computations for a set of solutions that has the same rest mass for each NS.

• For the inspiraling binary neutron stars, the flow field is expected to become 
irrotational.  If the neutron star matter has a very strong viscosity, the flow 
field may become corotational, but this is considered to be unlikely. 



Constant rest mass sequence for unequal mass binary neutron stars. 

• We write the rest mass and the central density of each NS component as 
(M1, ρ1), and (M2, ρ2).   

• To compute a solution that models the inspiral, we need to adjust three 
parameters, the rest mass M1 and the ratio of the rest mass q = M2/M1

to be desirable values, and y-component of the linear momentum Py to be zero, 
by adjusting the central densities ρ1 and ρ2, and the center of circular orbit. 
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• For the adjustment of these parameters to desirable values, the discrete 
Newton-Raphson method appears to be useful.  



If the form of the function F is not given explicitly at all, weuse the Discrete 
Newton-Raphson method described in the next page.

Recall: Newton-Raphson method; Find a solution for F(x) = 0, where F and x
may be the vector valued, and each component of F(x) may be nonlinear. 

Suppose x(n) is an approximation of a true solution, and x(n) + δx is exact,
F(x(n) + δx) = 0.  Expanding this to the first order, we have 

F(x(n) + δx) F(x(n)) + ∂F(x(n))/∂x δx 0. 

δx(n) := [∂F(x(n))/∂x]–1 � [– F(x(n))] 

Therefore we perform the following iteration; 

x(n+1) = x(n) + δx(n)

If the form of the inverse 
of the Jacobian is known.

Or, ∂F(x(n))/∂x  � δx(n) =  – F(x(n)) Or solve this linear eq. 
δx(n)

Update:

The method is called Newton-Raphson if the Jacobian ∂F(x(n))/∂x is computed 
analytically, while it is called secant method if theJacobian ∂F(x(n))/∂x is 
computed by the finite difference formula. 



Discrete Newton-Raphson method
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Fi(xk) = 0

Fi = (M1, q, Py)
xk = (ρ1, ρ2, d)

For n functionsFi , i = 1, …, n and n parameters xk , k = 1, …, n, compute 
Fi(xk

(n)), and Fi(xk
(n)  + εj δk

j) for j = 1, …, n, where δk
j is a Kronecker delta, 

and ε is a small value (εj 10-8 xj
(n) is recommended in a book. I’m using 

10-4 xj
(n)). Then, the Jacobian is calculated from

For finding desirable values for (M1, q, Py), we adjust (ρ1, ρ2, d).  However, 
explicit forms of (M1, q, Py) in terms of (ρ1, ρ2, d) are not given.  

Discrete Newton-Raphson method uses the Jacobian calculated in the 
following manner: 

Therefore one needs n+1 converged solution to compute a Jacobian.


