= [h/2π]など、必要な物理定数は解答に使用してよい。
*計算の過程も解答用紙に書くこと(公式覚えてきて書いただけでは点はやれないし、途中が書いてないと部分点もあげられない)。
以下の問のうち、4問を選択して解答せよ。5問以上答えた場合は点数のいい方から4つを合計して点数とする。
](mvx−1/2mv2t)=[mv/
](x−1/2vt)となりました。これだと波の速度が1/2vになっているんですけど、運動量mvなのに速度vにならないのはなぜですか?」
H2,O2の
ような2原子分子の回転運動を量子力学で扱うとどうなるかを考えよう。質量mの二つの粒子が距離2Rだけ離れて結びついているとする。実際の回転は3次元
的に起こるが、ここでは簡単のため平面上をぐるぐる回るとし、それ以外の運動は全て無視する。図の角度をθとして、θ に対する運動量をpθ とすると、これは角運動量であるから、pθ=2mR2· θである。
シュレーディンガー方程式を作る時にはハミルトニアンのpθを−i
[∂/∂θ]と置き換えればよい。
|
|
|
|
|
磁束密度Bの一様な磁場中で、電子(質量m、電荷−e)が磁場と垂直な平面内で半径rの等速円運動している。電子には速度とも磁場とも垂直な方向にevBの力(ローレンツ力)を受けながら運動する。
pdq=nh を適用することができる(nは自然数)。この場合の量子条件はどのように書けるか。
|