| (8.9) |
| (8.10) |
| (8.11) |
| (8.12) |
| (8.13) |
| (8.14) |
2/2m][¢ß/¢ßt]¦× = [¡Ý[(
2)/2m][(¢ß2)/(¢ßx2)]+V(x)]¦×¤¬À®Î©¤·¤Æ¤¤¤ë¤â¤Î¤È¤·¤Æ¡¢
| (8.15) |
| (8.16) |
| (8.17) |
| (8.18) |
| (8.19) |
[¢ß/¢ßx])¦×(x,t)¤Î¤è¤¦¤Ë¡¢¦×*¤È¦×¤Î´Ö¤Ë±¿Æ°Î̱黻»Ò¡Ýi
[¢ß/¢ßx]¤¬¤Ï¤µ¤Þ¤Ã¤¿·Á¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£¤³¤ì¤Ï¡Ö±¿Æ°Î̤δüÂÔÃ͡פȹͤ¨¤Æ¤è¤¤Î̤ˤʤäƤ¤¤ë¡£¤³¤ì¤¬ÂÅÅö¤Ç¤¢¤ë¤³¤È¤Ï¸å¤Ç¼¨¤¹¤È¤·¤Æ¡¢¤È¤ê¤¢¤¨¤º¢édx ¦×*(x,t)(¡Ýi
[¢ß/¢ßx])¦×(x,t)¤ò < p > ¤È½ñ¤¤¤Æ¤ª¤¯¤È¡¢
| (8.20) |
º¸¤Î¤è¤¦¤Ëɽ¤µ¤ì¤ëÇÈÆ°´Ø¿ô¦×(¼Â¿ôÉô¤·¤«¤Ê¤¤)¤òµ¬³Ê²½¤·¤¿¸å¡¢ < x > ¤òµá¤á¤è¡£
|
| (9.1) |
| (9.2) |
| (9.3) |
n ¤ò»ý¤Ã¤Æ¤¤¤ë¤È¤¤¤¦¤³¤È¤À¤«¤é¡¢Fn¤Ï¡¢¡ÖÇÈÆ°´Ø¿ô¤ÎÃæ¤Ë±¿Æ°ÎÌ
n ¤ò»ý¤Ã¤¿À®Ê¬¤¬¤É¤ÎÄøÅÙ´Þ¤Þ¤ì¤Æ¤¤¤ë¤«¡×¤ò¼¨¤¹¤È¸À¤¦¤³¤È¤¬¤Ç¤¤ë¡£³ÎΨ¤Ï¦×*¦×¤ËÈæÎ㤹¤ë¤«¤é¡¢±¿Æ°Î̤¬
n¤Ë¤Ê¤ë³ÎΨ¤ÏF*n Fn¤ËÈæÎ㤹¤ë(Fn¤Ï°ìÈ̤ËÊ£ÁÇ¿ô¤Ç¤¢¤ë¤³¤È¤ËÃí°Õ¡£¤¦¤Þ¤¯µ¬³Ê²½¤µ¤ì¤Æ¤¤¤ì¤Ð¡¢¡ÖÈæÎ㤹¤ë¡×¤Ç¤Ï¤Ê¤¯F*F¤Ï³ÎΨ¤½¤Î¤â¤Î¤È¤Ê¤ë)¡£
ñ½ã¤ÊÎã¤ò¹Í¤¨¤è¤¦¡£¤¢¤ëÇÈÆ°´Ø¿ô¤¬
| (9.4) |
,2
,3
¤Î±¿Æ°Î̤ò»ý¤Ã¤Æ¤¤¤ëγ»Ò¤òɽ¤¹ÇÈÆ°´Ø¿ô¤È²ò¼á¤Ç¤¡¢F1,F2,F3¤Ï¤½¤ì¤¾¤ì¤ÎÇȤ¬¤É¤ÎÄøÅÙº®¤¸¤Ã¤Æ¤¤¤ë¤«¤òɽ¤¹¿ô»ú¤Ç¤¢¤ë¡£¤Þ¤ºµ¬³Ê²½¾ò·ï¤ò¹Í¤¨¤ë¡£¡¡¦×*¦×¤òÀÑʬ¤¹¤ë¤È
| (9.5) |
| (9.6) |
,2
,3
¤Ë¤Ê¤ë³ÎΨ¤òɽ¤¹¡£¤è¤Ã¤Æ¡¢¤³¤Î¾ì¹ç¤Î±¿Æ°Î̤δüÂÔÃͤÏ(ÃÍ)¡ß(³ÎΨ)¤ÎϤȤ·¤Æ·×»»¤·¤Æ¡¢
| (9.7) |
[¢ß/¢ßx] ¤ÇÃÖ¤´¹¤¨¤ë¤³¤È¤¬¤Ç¤¤ë¡×¤È¤¤¤¦¤³¤È¤Î¤¢¤ê¤¬¤¿¤µ¤¬¤³¤³¤Ç¤â½Ð¤Æ¤¯¤ë¡£ÇÈÆ°´Ø¿ô¤Ë¤³¤Î±é»»»Ò¤ò¤«¤±¤ë¤È¡¢
| (9.8) |
| (9.9) |
| (9.10) |
[¢ß/¢ßx]¤ÎÊý¤ÏÈùʬ±é»»»Ò¤Ç¤¢¤ë¤«¤é¤É¤³¤Ë¤ª¤¤¤Æ¤â¤è¤¤¤È¤¤¤¦¤ï¤±¤Ë¤Ï¤¤¤«¤Ê¤¤¡£
|
[¢ß/¢ßx]¤ò¤«¤±¤ë¤È
| (9.11) |
n¡ß(¸µ¤Î´Ø¿ô)¤È¤¤¤¦·Á¤Ë¤â¤É¤ë¡£¤³¤Î¤è¤¦¤Ë¤¢¤ë±é»»»Ò¤ò¤«¤±¤Æ¤½¤Î´Ø¿ô¤Î·Á¤¬ÊѤï¤é¤º¡¢¤¿¤À¸µ¤Î·Á¤ÎÄê¿ôÇܤˤʤë»þ¡¢¤½¤Î´Ø¿ô¤ò¸ÇÍ´Ø¿ô¤È¸Æ¤Ó¡¢¤½¤Î»þ½Ð¤Æ¤¤¿¿ô(º£¤Î¾ì¹ç
n)¤ò¸ÇÍÃÍ ¤È¸Æ¤Ö41¡£
¾å¤Ç¤Ï£³¼ïÎà¤Î±¿Æ°Î̤ò»ý¤Ä¾õÂ֤Τ·¹ç¤ï¤µ¤ì¤¿¾õÂ֤ˤʤäƤ¤¤ëÇÈÆ°´Ø¿ô¤ò¹Í¤¨¤¿¡£¤³¤Î¤è¤¦¤ÊÇÈÆ°´Ø¿ô¤Ï¸ÇÍ´Ø¿ô¤Ç¤Ï¤Ê¤¤(°ì¸Ä°ì¸Ä¤ÎÀ®Ê¬¤Ï¸ÇÍ´Ø¿ô)¡£ÇÈÆ°´Ø¿ô¤¬±¿Æ°Î̤θÇÍ´Ø¿ô¤Ë¤Ê¤Ã¤Æ¤¤¤ë(einx°ì¹à¤Î¤ß¤«¤é¤Ê¤ë)¤È¤¤¤¦¤³¤È¤Ï¡¢¤½¤ÎÇÈÆ°´Ø¿ô¤Çɽ¤µ¤ì¤Æ¤¤¤ëÎÌ»ÒÎϳØÅª¾õÂ֤ϱ¿Æ°Î̤¬°ì¤Ä¤ÎÃÍ(
n)¤Ë·è¤Þ¤Ã¤Æ¤¤¤Æ¡¢¤æ¤é¤®¤¬¤Ê¤¤¤È¤¤¤¦¤³¤È¤Ç¤¢¤ë¡£
¡¡¤³¤Î»þ¡¢¦×*¦×¤ò·×»»¤¹¤ë¤È¡¢x¤Ë¤è¤é¤Ê¤¤Äê¿ô¤È¤Ê¤ë¡£¤Ê¤¼¤Ê¤é¤Ð¡¢e¡Ýinxeinx=1¤È¤¤¤¦·×»»¤«¤éx¤¬¾Ã¤¨¤Æ¤·¤Þ¤¦¤«¤é¤Ç¤¢¤ë¡£¤Ä¤Þ¤ê¡¢¤³¤Î¤è¤¦¤ÊÇÈÆ°´Ø¿ô¤Ï³ÎΨ̩ÅÙ¤¬Äê¿ô¡¢¤¹¤Ê¤ï¤Á¡¢¡Ö¤É¤³¤Ë¤¤¤ë¤ó¤À¤«¤µ¤Ã¤Ñ¤ê¤ï¤«¤é¤Ê¤¤¡×¤È¤¤¤¦¤³¤È¤Ç¤¢¤ë¡£±¿Æ°Î̤¬³ÎÄꤹ¤ë¤È°ÌÃÖ¤¬ÉÔ³ÎÄê¤Ë¤Ê¤ë¤È¤¤¤¦ÉÔ³ÎÄêÀ´Ø·¸¤¬¡¢¤³¤³¤Ç¤â¼Â¸½¤·¤Æ¤¤¤ë¡£
¡¡¼ÂºÝ¤Ë¸ºß¤¹¤ëÇÈÆ°´Ø¿ô¤Ç¤Ï¡¢¤¤¤í¤ó¤Ê±¿Æ°Î̤ò»ý¤Ã¤¿ÇÈÆ°´Ø¿ô¤Î½Å¤Í¹ç¤ï¤»¤Ë¤Ê¤Ã¤Æ¤ª¤ê¡¢±¿Æ°Î̤¬°ì¤Ä¤ÎÃͤ˳ÎÄꤷ¤Æ¤¤¤Ê¤¤(¤½¤ì¡¡¤æ¤¨µÕ¤Ëx¤Ë´Ø¤·¤Æ¤Ï¤¢¤ëÄøÅ٤Ϸè¤Þ¤Ã¤Æ¤¤¤ë)¡£Ç¤°Õ¤Î´Ø¿ô¤¬¥Õ¡¼¥ê¥¨ÊÑ´¹¤Ë¤è¤Ã¤Æeikx¤ÎϤηÁ¤Ë¤«¤±¤ë¤È¤¤¤¦¤³¤È¤Ï¤¹¤Ê¤ï¤Á¡¢Ç¤°Õ¤ÎÇÈÆ°´Ø¿ô¤¬¤¤¤í¤ó¤Ê±¿Æ°Î̤ò»ý¤Ã¤¿ÇÈÆ°´Ø¿ô¤Î½Å¤Í¹ç¤ï¤»¤Ç¤«¤Ê¤é¤º½ñ¤±¤ë¤È¤¤¤¦¤³¤È¤Ç¤¢¤ë¡£| ¢é | dx | ¦×*(x,t)x |
¢ß2 ¢ßx2 | ¦×(x,t)¡á | ¢é dx¡Ê |
¢ß2 ¢ßx2 | ¦×*(x,t) | ) | x¦×(x,t) |
| ¢é | dx | ¦×*(x,t) |
¢ß2 ¢ßx2 | ¡Ê | x¦×(x,t) | ) | =¢é dx¡Ê |
¢ß2 ¢ßx2 | ¦×*(x,t) | ) | x¦×(x,t) |
| ÈóÁêÂÐÏÀŪ |
ÁêÂÐÏÀŪ |
|
| ¸ÅŵÎÏ³Ø |
¥Ë¥å¡¼¥È¥óÎÏ³Ø |
ÁêÂÐÏÀŪÎϳءʥ¢¥¤¥ó¥·¥å¥¿¥¤¥ó¡Ë |
| ÎÌ»ÒÎÏ³Ø |
¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼° |
¥¯¥é¥¤¥ó¡¦¥´¥ë¥É¥óÊýÄø¼°¡¢¥Ç¥£¥é¥Ã¥¯ÊýÄø¼°¤Ê¤É |