º£¸å¤ÎͽÄê

¡úÎáÏÂ6ǯ01·î22Æü(·î) 16»þ20ʬ¡Á17»þ20ʬ

¾ì ½ê¡§ Íý³ØÉôA313¶µ¼¼

¹Ö±é¼Ô¡§ ݯ°æ°ì¼ù¡Ê¥ï¥ë¥·¥ã¥ïÂç³Ø¡¡½Ú¶µ¼ø¡Ë

¹Ö±éÂê̾¡§ ²Ã®´ïʪÍý¤Ë¤ª¤±¤ëÎ̻ҾðÊó

¹Ö±é³µÍס§

Î̻ҾðÊóÍýÏÀ¤Ë¤ª¤±¤ë¥¨¥ó¥¿¥ó¥°¥ë¥á¥ó¥È¤ä¡¢¥Ù¥ëÈó¶É½ê¾õÂ֤ʤɤϡ¢Î̻ҷ׻»¤äÎ̻ҽÅÎÏÍýÏÀ¤ÎÍý²ò¤Î¾å¤Ç½ÅÍפʸ°¤È¤Ê¤ë¡£°ìÊý¤Ç¡¢É¸½àÌÏ·¿¤äÁÇγ»ÒÍýÏÀ¤Ë¤ª¤±¤ëÎ̻ҾðÊóÍýÏÀ¤ÎÌò³ä¤Ë¤Ä¤¤¤Æ¤Ï¡¢¤³¤ì¤Þ¤Ç¤¢¤Þ¤êÃíÌܤµ¤ì¤Æ¤³¤Ê¤«¤Ã¤¿¡£¤È¤³¤í¤¬ºÇ¶á¡¢LHC¤Îγ»ÒÂÐÀ¸À®²áÄø¤ä¥Ò¥Ã¥°¥¹Î³»Ò¤ÎÊø²õ»ö¾Ý¤Ë¤ª¤¤¤Æ¡¢¥¨¥ó¥¿¥ó¥°¥ë¥á¥ó¥È¤ä¥Ù¥ëÉÔÅù¼°¤ÎÇˤì¤ò²Ã®´ï¼Â¸³¤ÇľÀܴѬ¤¹¤ë¥¢¥¤¥Ç¥£¥¢¤¬À¹¤ó¤Ë¸¦µæ¤µ¤ì¤Æ¤¤¤ë¡£¤³¤Î¹Ö±é¤Ç¤ÏºÇ¶á¥¹¥¿¡¼¥È¤·¤¿¤³¤ÎʬÌî¤ÎȯŸ¤Ë¤Ä¤¤¤Æû¤¯¿¨¤ì¡¢¤½¤Î¸å¡¢¹Ö±é¼Ô¤ÎºÇ¶á¤Î¸¦µæ¤Ç¤¢¤ë¡¢­¡¥Ò¥Ã¥°¥¹Î³»Ò¤ÎÊø²õ»ö¾Ý¤Ë¤ª¤±¤ë¥¨¥ó¥¿¥ó¥°¥ë¥á¥ó¥È¤ä¥Ù¥ëÉÔÅù¼°¤ÎÇˤì¤Î¬Äê¡¢­¢ÁÇγ»Ò¤Î£³ÂÎÊø²õ¤Ë¤ª¤±¤ë½ª¾õÂ֤Σ³¤Ä¤Î¥¹¥Ô¥ó¤Î´Ö¤Î¥¨¥ó¥¿¥ó¥°¥ë¥á¥ó¥È¡¢¤Ë¤Ä¤¤¤Æ¾Ü¤·¤¯²òÀ⤹¤ë¡£

¹Ö±éÆâÍƤϰʲ¼¤ÎÏÀʸ¤Ë´ð¤Å¤­¤Þ¤¹¡§ 2211.10513, 2310.01477


²áµî¤ÎÃÌÏòñ

¡úÎáÏÂ5ǯ12·î08Æü(¶â) 16»þ20ʬ¡Á17»þ20ʬ

¾ì ½ê¡§ Íý³ØÉôA313¶µ¼¼

¹Ö±é¼Ô¡§ ¶å¸åÂÁ°ìϺ¡ÊµþÅÔÂç³Ø´ðÁÃʪÍý³Ø¸¦µæ½êÆÃǤ¶µ¼ø¡Ë

¹Ö±éÂê̾¡§ Lee-Wick¤ÎÊ£ÁÇ¥´¡¼¥¹¥È¾ì¤ÎÍýÏÀ¤Î¥æ¥Ë¥¿¥ê¥Æ¥£¤ÎÇˤì

¹Ö±é³µÍס§

¶É½ê¥¹¥±¡¼¥ëÉÔÊѤÊWeyl½ÅÎÏÍýÏÀ¤ò½é¤á¡¤°ìÈ̤˶ÊΨ¤Î2¼¡¹à¤Þ¤Ç¤òºîÍѤ˴ޤàQuadratic GravityÍýÏÀ¤Ï¡¤·×Î̾ì¤Î4³¬Èùʬ¤Þ¤Ç´Þ¤ß¡¤¸Å¤¯¤«¤é¤¯¤ê¹þ¤ß²Äǽ¤Ç¤¢¤ë¤³¤È¤¬ÃΤé¤ì¤Æ¤¤¤¿¡¥¤·¤«¤·¤³¤ÎÍýÏÀ¤Î·×Î̾ì¤Ï¡¤masslessγ»Ò¤Èmassiveγ»Ò¤Î¡Ê2³¬Èùʬ¤Î¡Ë¾ì¤Ëʬ²ò½ÐÍ衤¤½¤Îmassiveγ»ÒÀ®Ê¬¤¬Éé·×Î̤Îghost¤Ç¤¢¤ê¥æ¥Ë¥¿¥êÀ­¤ò²õ¤¹¤³¤È¤¬ÌäÂê¤Ç¤¢¤Ã¤¿¡¥ Lee¤ÈWick¤Ï¡¤Quadratic Gravity¤äÈà¤é¤Îfinite QEDÅù¤Î¹â³¬ÈùʬÍýÏÀ¤Ç¡¤ÌäÂê¤Îmassive ghost¤¬°ìÈ̤ËÎÌ»ÒÊäÀµ¤ÇÊ£ÁǼÁÎ̤Îcomplex ghost¤Ë¤Ê¤ë¤³¤È¤ËÃíÌܤ·¡¤¥¨¥Í¥ë¥®¡¼Êݸ§¤«¤é¡¤¼Â¥¨¥Í¥ë¥®¡¼¤ÎʪÍýŪγ»Ò¤À¤±¤Î»¶Íð²áÄø¤Ç¤ÏÊ£ÁÇ¥¨¥Í¥ë¥®¡¼¤Îcomplex ghost¤Ï·è¤·¤ÆÀ¸À®¤µ¤ì¤º¡¤ÊªÍýŪγ»Ò¤À¤±¤Ç¥æ¥Ë¥¿¥êÀ­¤¬À®¤êΩ¤Ä¤È¡¤¼çÄ¥¤·¤¿¡¥¤³¤ÎLee-WickÍýÏÀ¤Ë´Ø¤·¤Æ¤Ï¡¤LorentzÉÔÊÑÀ­¤äCausality¤¬Çˤì¤Æ¤¤¤ë¤È¤ÎÈãȽ¤¬¤¢¤ê¤Ê¤¬¤é¤â¡¤ÉԻ׵Ĥʻö¤Ë¡¤¤è¤ê´ðËÜŪ¤Ê¥æ¥Ë¥¿¥êÀ­¤Î¼çÄ¥¤Ë¤Ï¶¯¤¤È¿ÏÀ¤¬¤Ê¤¯¡¤¤à¤·¤íǧ¤á¤é¤ì¤Æ¤­¤¿ÍͤǤ⤢¤ë¡¥ ¤³¤Î¼çÄ¥¤¬Àµ¤·¤±¤ì¤Ð¡¤½ÅÎÏÍýÏÀ¤â¡¤Â¾¤Îɸ½àÌÏ·¿¤Î¥²¡¼¥¸ÍýÏÀ¤ÈƱ¤¸¤¯¡¤¶ÊΨ¤Î2¼¡¹à¤òºîÍѤ˴ޤàQuadratic GravityÍýÏÀ¤Ç¤¹¤Ç¤Ë¡Ö¤¯¤ê¹þ¤ß²Äǽ¤Ç¥æ¥Ë¥¿¥ê¡¼¤Ê»ç³°´°Á´¤ÊÍýÏÀ¡×¤Ë¤Ê¤Ã¤Æ¤¤¤ë¤³¤È¤ò°ÕÌ£¤·¡¤¶Ë¤á¤Æ½ÅÂç¤Ê¤³¤È¤Ç¤¢¤ë¡¥ ËÜ¥»¥ß¥Ê¡¼¤Ç¤Ï¡¤²æ¡¹¤Ï¡¤ÊªÍýŪγ»Ò¤Î»¶Íð¤Çcomplex ghost¤¬À¸À®¤µ¤ì¤ë²áÄø¤Î»þ´ÖȯŸ¤òÁê¸ßºîÍÑɽ¼¨¤ÎÀÝÆ°ÏÀ¤ÇÄ´¤Ù¡¤¥¨¥Í¥ë¥®¡¼Êݸ¤¬À®¤êΩ¤Ä¤Ù¤­»þ´Ö̵¸ÂÂç¤Î¶Ë¸Â¤Ç¤â¡¤complex ghost¤¬¼ÂºÝ¤Ënon-zero¤Î¡ÊÉé¤Î¡Ë³ÎΨ¤ÇÀ¸À®¤µ¤ì¤ë¤³¤È¤ò¼¨¤¹¡¥¤³¤Î»þ¡¤Áê¸ßºîÍѤγÆvertex¤Ë¸½¤ì¤ë¥¨¥Í¥ë¥®¡¼Êݸ¤Î°ø»Ò¤Ç¤¢¤ëÊ£Áǥǥ륿´Ø¿ô¤ÎÀµ¤·¤¤Íý²ò¤È°·¤¤¤¬ËܼÁŪ¤Ç¤¢¤ë¤³¤È¤ò¼¨¤¹¡¥ ¤³¤ÎÏäϡ¤Max-Planck³ËʪÍý¸¦¡¤ÉÙ»³Âç¤Îµ×Êݼ£Êå»á¤È¤Î¶¦Æ±¸¦µæ¤Ë´ð¤Å¤­¤Þ¤¹¡¥

¡úÎáÏÂ5ǯ10·î13Æü(¶â) 16»þ20ʬ¡Á17»þ20ʬ

¾ì ½ê¡§ Íý³ØÉôA105¶µ¼¼

¹Ö±é¼Ô¡§ Dima Sorokin¡ÊGalileo Galilei Institute, Padova University¡Ë

¹Ö±éÂê̾¡§ Aspects of maximally symmetric non-linear¡ÊModMax¡Ëelectrodynamics

¹Ö±é³µÍס§

We will review properties and peculiarities of a unique non-linear generalization of Maxwell's electrodynamics¡Êdubbed ModMax¡Ëthat preserves all the symmetries of the former, i.e. conformal invariance and electric-magnetic duality. In particular, we will see that ModMax admits, as exact solutions, plane waves and Lienard-Wiechert fields induced by a moving electric or magnetic particle, or a dyon; effects of ModMax may manifest themselves in physical phenomena such as vacuum birefringence and in properties of gravitational objects¡Êe.g. charged black holes¡Ë. ModMax and its Born-Infeld-like generalization arise as TTbar-like deformations of Maxwell's theory and there exist supersymmetric and higher-spin extensions of these models.

¡úÎáÏ£²Ç¯£··î22Æü(¿å) 16»þ20ʬ¡Á17»þ20ʬ

¾ì ½ê¡§ zoom ¤Ë¤è¤ë±ó³Ö¤Ç¼Â»Ü¤·¤Þ¤¹¡£¡Ú»²²Ã¤ò´õ˾¤¹¤ë¤«¤¿¤Ï²¼µ­¤ÎÀ¤ÏÿͤޤǤ´Ï¢Íí¤¯¤À¤µ¤¤¡Û

¹Ö±é¼Ô¡§ ²¼ÀîÅýµ×ϯ »á¡Ê²­Æì²Ê³Øµ»½ÑÂç³Ø±¡Âç³Ø¡Ë

¹Ö±éÂê̾¡§ ¥Õ¥é¥¹¥È¥ì¡¼¥·¥ç¥ó¤¬Æ³¤¯¿·´ñ¤Ê¿½ÅqÃá½ø¾õÂÖ¤ÈÎ̻ҥ¹¥Ô¥ó±ÕÂξõÂÖ

¹Ö±é³µÍס§

¡Ö¥Õ¥é¥¹¥È¥ì¡¼¥·¥ç¥ó¡×¤È¤¤¤¦¸ÀÍդϼÂÀ¸³è¤Ë¤ª¤¤¤Æ¤Ï¤¢¤Þ¤êÎɤ¤¸ÀÍդǤϤʤ¤¤¬¡¢¼§À­Ê¬Ìî¤Ë¤ª¤¤¤Æ¤Ï¤à¤·¤í¿·´ñ¤Ê¸½¾Ý¤ò°ú¤­µ¯¤³¤¹½ÅÍפÊÍ×ÁǤȤʤäƤ¤¤ë¡£¤³¤³¤Ç¤¤¤¦¡Ö¥Õ¥é¥¹¥È¥ì¡¼¥·¥ç¥ó¡×¤È¤Ï¼§À­ÂÎÆâÉô¤ÎÁê¸ßºîÍѤζ¥¹ç¤Ë¤è¤Ã¤ÆÁê¸ßºîÍÑ¥¨¥Í¥ë¥®¡¼¤¬ºÇ¤âÆÀ¤¹¤ë¤è¤¦¤Ê¥¹¥Ô¥óÇÛÃÖ¤ò°ì°Õ¤Ë¼è¤ì¤Ê¤¤¾õ¶·¤ò»Ø¤¹¡£¤½¤ì¤æ¤¨¤Ë¥Õ¥é¥¹¥È¥ì¡¼¥È¼§À­ÂΤǤ϶ËÄã²¹¤Ç¤âñ½ã¤Ê¼§µ¤¹½Â¤¤ò»ý¤Ä¤³¤È¤¬½ÐÍ褺¡¢¤·¤Ð¤·¤Ð¡Ö¶Ê¤¬¤Ã¤¿¡×¥¹¥Ô¥ó¹½Â¤¤¬°ÂÄê²½¤µ¤ì¤¿¤ê¡¢ÀäÂÐÎíÅ٤Ǥµ¤¨¥¹¥Ô¥ó¤¬¡Ö±ÕÂΡפΤ褦¤Ë¿¶Éñ¤¦ÆðۤʾõÂÖ¤¬¸½¤ì¤¿¤ê¤¹¤ë¡£

Ëֱܹé¤ÎÁ°È¾¤Ç¤Ï¶áǯÀ¹¤ó¤Ë¸¦µæ¤¬¹Ô¤ï¤ì¤Æ¤¤¤ë¿½ÅqÃá½ø¾õÂ֤ˤĤ¤¤Æ¼è¤ê¾å¤²¤ë¡£Â¿½ÅqÃá½ø¾õÂ֤ȤÏÊ£¿ô¤ÎÇÈ¿ô¤ÎÃá½ø¤¬¶¦Â¸¤·¤¿¾õÂ֤Τ³¤È¤ò»Ø¤·¡¢Î㤨¤Ð3¼ïÎà¤ÎÇÈ¿ô¤ÎÃá½ø¤¬¶¦Â¸¤·¤¿¥¹¥«¡¼¥ß¥ª¥ó³Ê»Ò¾õÂÖ¤Ïtriple-q¾õÂ֤ΰì¼ï¤È¤·¤ÆÃΤé¤ì¤Æ¤¤¤ë¡£¹Ö±é¤Ç¤Ï¥Õ¥é¥¹¥È¥ì¡¼¥È¤·¤¿¸Åŵ¥Ï¥Ë¥«¥à³Ê»ÒÈ¿¶¯¼§À­ÂΤ˸½¤ì¤ë°ìÉ÷ÊѤï¤Ã¤¿Â¿½ÅqÃá½ø¾õÂ֤ˤĤ¤¤ÆÊó¹ð¤¹¤ë¡£¹Ö±é¤Î¸åȾ¤Ç¤Ï¶áǯ¤Ë¤Ê¤Ã¤Æ¹çÀ®¤µ¤ì¤¿¿·¤·¤¤Î̻ҥ¹¥Ô¥ó±ÕÂθõÊäʪ¼Á-bilayer breathing ¥«¥´¥á³Ê»Ò¼§À­ÂÎ-Ca10Cr7O28¤Ë´Ø¤·¤Æ¡¢²æ¡¹¤¬¸½ºß¿Ê¹Ô·Á¤Ç¹Ô¤Ã¤Æ¤¤¤ëºÇ¿·¤ÎÍýÏÀ·×»»·ë²Ì¤Ë¤Ä¤¤¤ÆÊó¹ð¤¹¤ëͽÄê¤Ç¤¢¤ë¡£

À¤Ïÿ͡§ °ÂÅÄÀé¼÷¡ÊÍý³ØÉôʪ¼ÁÃϵå²Ê³Ø²ÊʪÍý·Ï¡ËÏ¢ÍíÀè¤Ïcyasuda [¤¢¤Ã¤È¤Þ¡¼¤¯] sci.u-ryukyu.ac.jp

¡úÎáÏ£²Ç¯2·î6Æü(ÌÚ) 14»þ40ʬ¡Á

¾ì ½ê¡§ Íý³ØÉôA313¶µ¼¼

¹Ö±é¼Ô¡§ A.T. Burkov ÀèÀ¸(¥è¥Ã¥Õ¥§ÊªÍý³Øµ»½Ñ¸¦µæ½ê(¥í¥·¥¢))

¹Ö±éÂê̾¡§Thermoelectric energy conversion: history, present state and future prospects.

¹Ö±é³µÍס§

Thermoelectric (TE) energy conversion is based on three thermoelectric phenomena:Seebeck, Peltier and Thomson effects. These effects were discovered in 19-th century by German scientist Thomas Johann Seebeck, the French Jean Charles Athanase Peltier and the British William Thomson (Lord Kelvin), respectively. For about a century after discovery the only practical applications were the metallic thermocouples, utilizing the Seebeck effect and used for measurements of temperature, and as electrical current sources in experimental practice. The modern TE technology was born after Abraham Ioffe, the founder of the Ioffe Institute, proposed in 1930-th that semiconductors can be much more efficient materials for thermoelements than the metallic alloys. Intensive research and development efforts in 1950 – 1960 laid down the fundamental and technological principles for the modern thermoelectric industry: theoretical background for optimization of material parameters, design of the basic elements of the thermoelectric devices (thermoelements and thermoelectric modules). Bi2(TeSe)3 and (BiSb)2Te3 alloys, PbTe – based compounds, and Si-Ge solid solutions, which were developed at that time, are still among the most efficient thermoelectric materials for the temperature range from 260 K to 400 K, 300 K to 800 K, and 400 K to 1200 K respectively, and the only materials which are used for commercial production of thermoelectric cooling and generating modules. On this foundation during 1960 to 1980-th the various thermoelectric converters: TEGs, utilizing the heat of organic fuels, of nuclear reactors and of non-stable isotopes decay (RTG) for terrestrial, underwater, space applications, and the thermoelectric cooling modules, were developed. Now these TE devices have diverse applications.

Currently, the TE coolers have found most diverse application. The TE cooling modules are used for thermo-stabilization of opto-electronic devices in optical transmission lines, for cooling of infra-red sensors, computer chips, in microelectronic industry, for climate control in automobiles and railway locomotives, in medicine and more. The TEG application field is much narrower, but it has a clear tendency for expansion. Among the main drivers for this expansion tendency are the need to utilize huge amount of waste low potential thermal energy, and the urgent need for autonomous power sources, including power sources for wireless devices. At the moment TEGs have niche applications at long pipe lines, supplying electricity for cathodic protection systems, and as power suppliers for space missions, operating beyond the Earth orbit. TE converters have several important advantages in comparison with other autonomous energy sources: these are solid state devices, without any moving parts, noiseless, very scalable and extremely reliable (experimentally proven unattended operation of TEG exceeds 40 years), capable to convert low potential heat into electricity. One of the main limiting factors for the TE technology is the comparatively low efficiency of TE converters. Therefore the search for new, more efficient TE materials, and development of scientific foundations for engineering approach to designing of thermoelectrics, is the mainstream of the thermoelectric research.

Finally, recently it was recognized that many of the most efficient TE materials belong to the new class of condensed matter – the materials with topologically non-trivial band structure, such as topological insulators or Weyl semimetals. This observation initiated a wave of research on feasibility to utilize topological features for improvement of TE performance.

¡úÎáÏ£²Ç¯1·î23Æü(ÌÚ) 14»þ40ʬ¡Á

¾ì ½ê¡§ Íý³ØÉôA313¶µ¼¼

¹Ö±é¼Ô¡§ Æó´ÖÀ¥ÉһˡʵþÅÔ»º¶ÈÂç³Ø¡¡Íý³ØÉô¡¡±§ÃèʪÍý¡¦µ¤¾Ý³Ø²Ê¡Ë

¹Ö±éÂê̾¡§¥¢¥¤¥ó¥·¥å¥¿¥¤¥óÊýÄø¼°¤ÎÊ¿¶Ñ²½¤È¥Ï¥Ã¥Ö¥ëÄê¿ôÌäÂê

¹Ö±é³µÍס§

¶áǯ¡¢±§Ãè¥Þ¥¤¥¯¥íÇÈÇØ·ÊÊü¼Í¤Î´Ñ¬¤«¤éɾ²Á¤µ¤ì¤¿¥Ï¥Ã¥Ö¥ëÄê¿ô¤È¶ä²Ï¥µ¡¼¥Ù¥¤¤äĶ¿·À±´Ñ¬¤«¤éɾ²Á¤µ¤ì¤¿¥Ï¥Ã¥Ö¥ëÄê¿ô¤ÎÃͤË10%ÄøÅ٤ΰ㤤¤¬¤¢¤ë¤³¤È¤¬ÏÃÂê¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£¤½¤Î°ì¤Ä¤ÎÀâÌÀ¤È¤·¤Æ²æ¡¹¤Î¶ä²Ï·Ï¤¬±§Ãè¤ÎÄãÌ©ÅÙÎΰè¤Ë¸ºß¤·¤Æ¤¤¤ë¤È¤¤¤¦»ØŦ¤¬¤¢¤ê¡¢¤Þ¤¿´Ñ¬Ū¤Ë¤â¤½¤Î¤è¤¦¤ÊÃû¸õ¤¬Â¸ºß¤¹¤ë¡£

¥»¥ß¥Ê¡¼¤Ç¤Ï¡¢¥¢¥¤¥ó¥·¥å¥¿¥¤¥óÊýÄø¼°¤Î¶É½êÎΰè¤Ë¤ª¤±¤ëÊ¿¶Ñ²½¤òƳÆþ¤·¤ÆÈó°ìÍͱ§Ãè¤òµ­½Ò¤·¡¢¶É½êŪ¤Ê±§ÃèÏÀ¥Ñ¥é¥á¡¼¥¿¤òÄêµÁ¤¹¤ë¤³¤È¤Ç¥Ï¥Ã¥Ö¥ëÄê¿ôÌäÂ꤬\²ò·è¤Ç¤­¤ë¤³¤È¤ò¼¨¤¹¡£¤è¤ê°ìÈ̤ËÇطʤΰìÍÍÅùÊý»þ¶õ¤Î¶ÊΨ¡¢±§ÃèÄê¿ô¤Î¤¢¤ë¤Ê¤·¤Ë¤«¤«¤ï¤é¤º¶É½êŪ¤ÊÌ©ÅÙ¤ÎÍɤ餮¤Î¸ú²Ì¤Ï¡¢¶ÊΨ¹à¤Ë·«¤ê¹þ¤Þ¤ì¤ë¤³¤È¤¬¼¨¤µ¤ì¤ë¡£

¡úÎáϸµÇ¯11·î21Æü(ÌÚ) 4»þ20ʬ¡Á

¾ì½ê¡¡¡§ Íý³ØÉôA313¶µ¼¼

¹Ö±é¼Ô¡§ ÅçÅıÑɧ¡Ê²­Æì²Ê³Øµ»½ÑÂç³Ø±¡Âç³Ø (OIST) ¡Ë

¹Ö±éÂê̾¡§ MÍýÏÀ¤ÎÄê¼°²½¤Ë¤Ä¤¤¤Æ

¹Ö±é³µÍס§

¡¡¼«Á³³¦¤Î´ðËÜŪ¤Ê¼«Í³ÅÙ¤¬Î³»Ò¤Ç¤Ï¤Ê¤¯1¼¡¸µ¤Î¤Ò¤â(¸¹)¤Ç¤¢¤ë¤È¤¹¤ë¸¹ÍýÏÀ¤Ï, Î̻ҽÅÎϤò´Þ¤à¼«Á³³¦¤ÎÅý°ìÍýÏÀ¤ÎÍ­ÎϸõÊä¤Ç¤¹. ¤·¤«¤·,¸½ºß¤Î¸¹ÍýÏÀ¤ÎÄê¼°²½¤Ï,¸¹Æ±»Î¤ÎÁê¸ßºîÍѤ¬¼å¤¤¤È¤¤¤¦¶á»÷¤Ë´ð¤Å¤¤¤¿¤â¤Î¤Ç¤¹.ÍýÏÀ¤Î¿¿¤Î¡ÖÈóÀÝưŪ¡×¤Ê¿¶Éñ¤¤¤Ï,°ìÈ̤˶á»÷¤Ë¤â¤È¤Å¤¤¤¿¡ÖÀÝưŪ¡×¤Ê¤â¤Î¤ÈÁ´¤¯°Û¤Ê¤ë¤â¤Î¤Ë¤Ê¤êÆÀ¤Þ¤¹.¤½¤Î¤¿¤á, º£Æü¤Î¸¹ÍýÏÀ¤½¤Î¤â¤Î¤ÎÍý²ò¤Ï¶Ë¤á¤ÆÉÔ½½Ê¬¤Ê¤â¤Î¤È¸À¤¨¤Þ¤¹.

¡¡¤½¤ì¤Ç¤â, ÍÍ¡¹¤Ê´ÖÀÜŪ¤ÊµÄÏÀ¤Ë¤è¤Ã¤Æ, ¸¹¤ÎÈóÀÝưŪ¤ÊÀ­¼Á¤â¤¢¤ëÄøÅÙÌÀ¤é¤«¤Ë¤Ê¤Ã¤Æ¤­¤Æ¤¤¤Þ¤¹. ÆäËÁê¸ßºîÍѤ¬¶¯¤¯¤Ê¤ë¤¢¤ë¶Ë¸Â¤Ç, ¸¹ÍýÏÀ¤¬¸¹¤Ç¤Ê¤¯2¼¡¸µ¤ÎËì¤ò¼«Í³Å٤Ȥ¹¤ëÍýÏÀ(MÍýÏÀ)¤Ë¤Ê¤ë¤³¤È¤¬Í½ÁÛ¤µ¤ì¤Æ¤¤¤Þ¤¹.¤³¤ÎMÍýÏÀ¤Ï, ¸¹ÍýÏÀ¤ÎÈóÀÝưŪÀ­¼Á¤È¤·¤ÆºÇ¤â½ÅÍפʤâ¤Î¤Î°ì¤Ä¤Ç¤¹¤¬,¤½¤Î°ìÊý¤ÇMÍýÏÀ¤ò¤É¤¦¤ä¤Ã¤ÆÄê¼°²½¤·¤¿¤é¤è¤¤¤Î¤«(´ðËܼ«Í³Å٤Ϥʤˤ«,¤É¤Î¤è¤¦¤ÊºîÍѤǽñ¤±¤ë¤«)¤Ë¤Ï̤¤À¤Ë¥³¥ó¥»¥ó¥µ¥¹¤¬¤¢¤ê¤Þ¤»¤ó.¤³¤Î¹Ö±é¤Ç¤Ï, MÍýÏÀ¤Ë¤Ä¤¤¤Æ, ¤Þ¤¿¤½¤ÎÄê¼°²½¤Î¸½¾õ¤È²ÝÂê¤Ë¤Ä¤¤¤Æ²òÀ⤷¤Þ¤¹.

¡úÎáϸµÇ¯9·î26Æü(ÌÚ) 15»þ0ʬ¡Á

¾ì ½ê¡§ Íý³ØÉôA313¶µ¼¼

¹Ö±é¼Ô¡§ Åû°æ¡¡Àô¡Ê¹â¥¨¥Í¥ë¥®¡¼²Ã®´ï¸¦µæµ¡¹½ ÁÇγ»Ò¸¶»Ò³Ë¸¦µæ½ê¡Ë

¹Ö±éÂê̾¡§ ¼åÃͤȼå¬Äꡧ¿·¤·¤¤ÎÌ»ÒʪÍýÎ̤ÎʪÍýŪ°ÕÌ£¤È¤½¤ÎÀºÌ©Â¬Äê¤Ø¤Î±þÍÑ

¹Ö±é³µÍס§

¥¢¥Ï¥í¥Î¥Õ¤é¤Ë¤è¤Ã¤Æ30ǯÁ°¤ËÄóµÄ¤µ¤ì¤¿¿·¤¿¤ÊÎÌ»ÒÎϳؤÎʪÍýÎ̳µÇ°¤È¤·¤Æ¤Î¡Ö¼åÃÍ¡ÊWeak Value¡Ë¡×¤¬¡¢¶áǯ¡¢£²¤Ä¤ÎÍýͳ¤«¤éÃíÌܤµ¤ì¤ë¤è¤¦¤Ë¤Ê¤Ã¤Æ¤­¤Æ¤¤¤ë¡£¤½¤Î°ì¤Ä¤Ï¡¢¾õÂÖ¤ÎÁªÂò¤Ë¤è¤ê¡Ö¼åÃ͡פÎÁýÉý¤¬²Äǽ¤È¤Ê¤ë¤³¤È¤«¤é¡¢¤³¤ì¤òʪÍýÎ̤ÎÀºÌ©Â¬Äê¤ËÍøÍѤǤ­¤ë¤³¤È¤¬ÌÀ¤é¤«¤Ë¤Ê¤Ã¤¿¤³¤È¤Ç¤¢¤ë¡£¤â¤¦°ì¤Ä¤Ï¡¢¼Â¿ôÃͤǤ¢¤ëÄ̾ï¤ÎʪÍýÎ̤άÄêÃͤȰۤʤꡢ¡Ö¼åÃ͡פÏÊ£ÁÇ¿ôÃͤò¼è¤ë¤³¤È¤¬¤Ç¤­¤ë¤³¤È¤«¤é¡¢¤³¤Î¼«Í³ÅÙ¤òÄ̤·¤Æ¡¢½¾Í褫¤éÃΤé¤ì¤¿ÎÌ»ÒÎϳؤΥѥé¥É¥Ã¥¯¥¹¤Ø¤Î¿·¤·¤¤»ëÅÀ¤¬ÆÀ¤é¤ì¤ë¤³¤È¤Ç¤¢¤ë¡£¤³¤Î¹Ö±é¤Ç¤Ï¡¢¤³¤ì¤é´ðÁäȱþÍѤÎξÌ̤«¤é¡¢ÎÌ»ÒÎϳؤˤª¤±¤ë¡Ö¼åÃ͡פÎËܼÁ¤È°ÕµÁ¤Ë¤Ä¤¤¤ÆÀâÌÀ¤ò¹Ô¤¦¡£

¡úÎáϸµÇ¯7·î5Æü(¶â) 16»þ20ʬ¡Á

¾ì ½ê¡§ Íý³ØÉôA313¶µ¼¼

¹Ö±é¼Ô¡§ ±§²ì¿ÀÃÊOIST¡Ë

¹Ö±éÂê̾¡§ Î̻ҽÅÎÏÍýÏÀ¤ÈÎ̻ҾðÊóÍýÏÀ¤Ë¤Ä¤¤¤Æ

¹Ö±é³µÍס§

Ì·½â¤Î̵¤¤½ÅÎϤÎÎÌ»ÒÏÀ¡ÊÎ̻ҽÅÎÏÍýÏÀ¡Ë¤ò¹½À®¤¹¤ë¤³¤È¤Ï¡¢¸½ÂåÍýÏÀʪÍý³Ø¤ÎÃ濴Ū¤Ê²ÝÂê¤Î°ì¤Ä¤Ç¤¢¤ë¡£¤³¤Î¸¦µæ¤Î²áÄø¤Ç¡¢Î̻ҽÅÎÏÍýÏÀ¤¬¾ðÊóÍýÏÀ¤ÈÌ©Àܤʤ«¤«¤ï¤ê¤ò»ý¤Ä¤³¤È¤¬ÌÀ¤é¤«¤Ë¤Ê¤Ã¤Æ¤­¤¿¡£¤½¤Îȯü¤È¤Ê¤Ã¤¿¤Î¤Ï¡¢¥Ö¥é¥Ã¥¯¥Û¡¼¥ë¤¬¤½¤Î»ö¾Ý¤ÎÃÏÊ¿Ì̤ÎÌÌÀѤËÈæÎ㤹¤ëÇ®ÎϳØŪ¥¨¥ó¥È¥í¥Ô¡¼¤ò»ý¤Ã¤Æ¤¤¤ë¤³¤È¤Îȯ¸«¤Ç¤¢¤ë¡£¤³¤Îȯ¸«¤Ï¡¢Í­¸Â¤ÎÎΰè¾å¤ÇÄêµÁ¤µ¤ì¤¿Î̻ҽÅÎÏÍýÏÀ¤¬¡¢¤³¤ÎÎΰè¤Î¶­³¦¤Ë¤ª¤±¤ë½ÅÎϤò´Þ¤Þ¤Ê¤¤ÎÌ»ÒÏÀ¤ÈÅù²Á¤Ë¤Ê¤ë¤È¤¤¤¦¥Û¥í¥°¥é¥Õ¥£¡¼¸¶Íý¤Ë¾º²Ú¤µ¤ì¤¿¡£¤Þ¤¿¶áǯ¤½¤Î¶ñÂÎÎã¤Ç¤¢¤ëAdS/CFTÂбþ¤¬È¯¸«¤µ¤ì¡¢³èȯ¤ËµÄÏÀ¤µ¤ì¤Æ¤¤¤ë¡£¤µ¤éAdS/CFTÂбþ¤Ë¤ª¤¤¤ÆÎ̻ҾðÊóÍýÏÀŪ¤Ê³µÇ°¤¬Ã濴Ū¤ÊÌò³ä¤òô¤Ã¤Æ¤¤¤ë¤³¤È¤¬ÌÀ¤é¤«¤Ë¤Ê¤Ã¤Æ¤­¤¿¡£ Ëܸø±é¤Ç¤Ï¡¢Î̻ҽÅÎÏÍýÏÀ¤Ë¤ª¤¤¤Æ¤É¤Î¤è¤¦¤ËÎ̻ҾðÊóÍýÏÀŪ¤Ê³µÇ°¤¬ÁȤ߹þ¤Þ¤ì¤Æ¤¤¤ë¤Î¤«¤Ë¤Ä¤¤¤Æ¡¢¤½¤Î¸½¾õ¤Èº£¸å¤ÎŸ˾¤Ë¤Ä¤¤¤Æ²òÀ⤹¤ë¡£



2018ǯÅÙ¤ÎÃÌÏòñ

2017ǯÅÙ¤ÎÃÌÏòñ

2016ǯÅÙ¤ÎÃÌÏòñ

2015ǯÅÙ¤ÎÃÌÏòñ

2014ǯÅÙ¤ÎÃÌÏòñ

2013ǯÅÙ¤ÎÃÌÏòñ

2012ǯÅÙ¤ÎÃÌÏòñ

2011ǯÅÙ¤ÎÃÌÏòñ

2010ǯÅÙ¤ÎÃÌÏòñ

2009ǯÅÙ¤ÎÃÌÏòñ

2008ǯÅÙ¤ÎÃÌÏòñ

2007ǯÅÙ¤ÎÃÌÏòñ


¥È¥Ã¥×   ÊÔ½¸ Åà·ë º¹Ê¬ ¥Ð¥Ã¥¯¥¢¥Ã¥× źÉÕ Ê£À½ ̾Á°Êѹ¹ ¥ê¥í¡¼¥É   ¿·µ¬ °ìÍ÷ ñ¸ì¸¡º÷ ºÇ½ª¹¹¿·   ¥Ø¥ë¥×   ºÇ½ª¹¹¿·¤ÎRSS
Last-modified: 2024-01-17 (¿å) 12:19:09 (237d)